Reformat
This commit is contained in:
@@ -116,7 +116,15 @@ def pipeline_with_logprob(
|
||||
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
callback_steps,
|
||||
negative_prompt,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
)
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
@@ -133,7 +141,11 @@ def pipeline_with_logprob(
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
text_encoder_lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
||||
text_encoder_lora_scale = (
|
||||
cross_attention_kwargs.get("scale", None)
|
||||
if cross_attention_kwargs is not None
|
||||
else None
|
||||
)
|
||||
prompt_embeds = self._encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
@@ -172,7 +184,9 @@ def pipeline_with_logprob(
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = (
|
||||
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
)
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
@@ -187,27 +201,39 @@ def pipeline_with_logprob(
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (
|
||||
noise_pred_text - noise_pred_uncond
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
||||
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
||||
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
||||
noise_pred = rescale_noise_cfg(
|
||||
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
|
||||
)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents, log_prob = ddim_step_with_logprob(self.scheduler, noise_pred, t, latents, **extra_step_kwargs)
|
||||
latents, log_prob = ddim_step_with_logprob(
|
||||
self.scheduler, noise_pred, t, latents, **extra_step_kwargs
|
||||
)
|
||||
|
||||
all_latents.append(latents)
|
||||
all_log_probs.append(log_prob)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
if i == len(timesteps) - 1 or (
|
||||
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
||||
):
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
callback(i, t, latents)
|
||||
|
||||
if not output_type == "latent":
|
||||
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
||||
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
||||
image = self.vae.decode(
|
||||
latents / self.vae.config.scaling_factor, return_dict=False
|
||||
)[0]
|
||||
image, has_nsfw_concept = self.run_safety_checker(
|
||||
image, device, prompt_embeds.dtype
|
||||
)
|
||||
else:
|
||||
image = latents
|
||||
has_nsfw_concept = None
|
||||
@@ -217,7 +243,9 @@ def pipeline_with_logprob(
|
||||
else:
|
||||
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
||||
|
||||
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
||||
image = self.image_processor.postprocess(
|
||||
image, output_type=output_type, do_denormalize=do_denormalize
|
||||
)
|
||||
|
||||
# Offload last model to CPU
|
||||
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
||||
|
Reference in New Issue
Block a user