Continue implementation

This commit is contained in:
Kevin Black
2023-06-23 21:08:32 -07:00
parent 6d848c3cdc
commit 92fc030123
3 changed files with 57 additions and 25 deletions

View File

@@ -12,8 +12,12 @@ from ddpo_pytorch.stat_tracking import PerPromptStatTracker
from ddpo_pytorch.diffusers_patch.pipeline_with_logprob import pipeline_with_logprob
from ddpo_pytorch.diffusers_patch.ddim_with_logprob import ddim_step_with_logprob
import torch
import wandb
from functools import partial
import tqdm
tqdm = partial(tqdm.tqdm, dynamic_ncols=True)
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file("config", "config/base.py", "Training configuration.")
@@ -25,7 +29,7 @@ def main(_):
# basic Accelerate and logging setup
config = FLAGS.config
accelerator = Accelerator(
log_with="all",
log_with="wandb",
mixed_precision=config.mixed_precision,
project_dir=config.logdir,
)
@@ -163,11 +167,12 @@ def main(_):
config.per_prompt_stat_tracking.min_count,
)
global_step = 0
for epoch in range(config.num_epochs):
#################### SAMPLING ####################
samples = []
prompts = []
for i in tqdm.tqdm(
for i in tqdm(
range(config.sample.num_batches_per_epoch),
desc=f"Epoch {epoch}: sampling",
disable=not accelerator.is_local_main_process,
@@ -216,7 +221,7 @@ def main(_):
"latents": latents[:, :-1], # each entry is the latent before timestep t
"next_latents": latents[:, 1:], # each entry is the latent after timestep t
"log_probs": log_probs,
"rewards": torch.as_tensor(rewards),
"rewards": torch.as_tensor(rewards, device=accelerator.device),
}
)
@@ -226,6 +231,13 @@ def main(_):
# gather rewards across processes
rewards = accelerator.gather(samples["rewards"]).cpu().numpy()
# log sample-related stuff
accelerator.log({"reward": rewards, "epoch": epoch}, step=global_step)
accelerator.log(
{"images": [wandb.Image(image, caption=prompt) for image, prompt in zip(images, prompts)]},
step=global_step,
)
# per-prompt mean/std tracking
if config.per_prompt_stat_tracking:
# gather the prompts across processes
@@ -268,10 +280,11 @@ def main(_):
samples_batched = [dict(zip(samples_batched, x)) for x in zip(*samples_batched.values())]
# train
for i, sample in tqdm.tqdm(
for i, sample in tqdm(
list(enumerate(samples_batched)),
desc=f"Outer epoch {epoch}, inner epoch {inner_epoch}: training",
desc=f"Epoch {epoch}.{inner_epoch}: training",
position=0,
disable=not accelerator.is_local_main_process,
):
if config.train.cfg:
# concat negative prompts to sample prompts to avoid two forward passes
@@ -279,11 +292,12 @@ def main(_):
else:
embeds = sample["prompt_embeds"]
for j in tqdm.trange(
num_timesteps,
for j in tqdm(
range(num_timesteps),
desc=f"Timestep",
position=1,
leave=False,
disable=not accelerator.is_local_main_process,
):
with accelerator.accumulate(pipeline.unet):
if config.train.cfg:
@@ -311,7 +325,7 @@ def main(_):
# ppo logic
advantages = torch.clamp(
sample["advantages"][:, j], -config.train.adv_clip_max, config.train.adv_clip_max
sample["advantages"], -config.train.adv_clip_max, config.train.adv_clip_max
)
ratio = torch.exp(log_prob - sample["log_probs"][:, j])
unclipped_loss = -advantages * ratio
@@ -326,9 +340,14 @@ def main(_):
# estimator, but most existing code uses this so...
# http://joschu.net/blog/kl-approx.html
info["approx_kl"] = 0.5 * torch.mean((log_prob - sample["log_probs"][:, j]) ** 2)
info["clipfrac"] = torch.mean(torch.abs(ratio - 1.0) > config.train.clip_range)
info["clipfrac"] = torch.mean((torch.abs(ratio - 1.0) > config.train.clip_range).float())
info["loss"] = loss
# log training-related stuff
info.update({"epoch": epoch, "inner_epoch": inner_epoch, "timestep": j})
accelerator.log(info, step=global_step)
global_step += 1
# backward pass
accelerator.backward(loss)
if accelerator.sync_gradients: