Add aesthetic scorer reward function
This commit is contained in:
48
ddpo_pytorch/aesthetic_scorer.py
Normal file
48
ddpo_pytorch/aesthetic_scorer.py
Normal file
@@ -0,0 +1,48 @@
|
||||
# Based on https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/fe88a163f4661b4ddabba0751ff645e2e620746e/simple_inference.py
|
||||
|
||||
from importlib import resources
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from transformers import CLIPModel, CLIPProcessor
|
||||
|
||||
ASSETS_PATH = resources.files("ddpo_pytorch.assets")
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layers = nn.Sequential(
|
||||
nn.Linear(768, 1024),
|
||||
nn.Identity(),
|
||||
nn.Linear(1024, 128),
|
||||
nn.Identity(),
|
||||
nn.Linear(128, 64),
|
||||
nn.Identity(),
|
||||
nn.Linear(64, 16),
|
||||
nn.Linear(16, 1),
|
||||
)
|
||||
|
||||
state_dict = torch.load(ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth"))
|
||||
self.load_state_dict(state_dict)
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, embed):
|
||||
return self.layers(embed)
|
||||
|
||||
|
||||
class AestheticScorer(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
||||
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
||||
self.mlp = MLP()
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, images):
|
||||
inputs = self.processor(images=images, return_tensors="pt")
|
||||
inputs = {k: v.cuda() for k, v in inputs.items()}
|
||||
embed = self.clip.get_image_features(**inputs)
|
||||
# normalize embedding
|
||||
embed = embed / embed.norm(dim=-1, keepdim=True)
|
||||
return self.mlp(embed)
|
Reference in New Issue
Block a user