Update configs
This commit is contained in:
@@ -5,28 +5,91 @@ import os
|
||||
base = imp.load_source("base", os.path.join(os.path.dirname(__file__), "base.py"))
|
||||
|
||||
|
||||
def get_config():
|
||||
def compressibility():
|
||||
config = base.get_config()
|
||||
|
||||
config.pretrained.model = "runwayml/stable-diffusion-v1-5"
|
||||
config.pretrained.model = "CompVis/stable-diffusion-v1-4"
|
||||
|
||||
config.mixed_precision = "fp16"
|
||||
config.allow_tf32 = True
|
||||
config.use_lora = False
|
||||
config.num_epochs = 100
|
||||
config.use_lora = True
|
||||
config.save_freq = 1
|
||||
config.num_checkpoint_limit = 100000000
|
||||
|
||||
config.train.batch_size = 4
|
||||
config.train.gradient_accumulation_steps = 2
|
||||
config.train.learning_rate = 3e-5
|
||||
config.train.clip_range = 1e-4
|
||||
|
||||
# sampling
|
||||
config.sample.num_steps = 50
|
||||
# the DGX machine I used had 8 GPUs, so this corresponds to 8 * 8 * 4 = 256 samples per epoch.
|
||||
config.sample.batch_size = 8
|
||||
config.sample.num_batches_per_epoch = 4
|
||||
|
||||
# this corresponds to (8 * 4) / (4 * 2) = 4 gradient updates per epoch.
|
||||
config.train.batch_size = 4
|
||||
config.train.gradient_accumulation_steps = 2
|
||||
|
||||
# prompting
|
||||
config.prompt_fn = "imagenet_animals"
|
||||
config.prompt_fn_kwargs = {}
|
||||
|
||||
# rewards
|
||||
config.reward_fn = "jpeg_compressibility"
|
||||
|
||||
config.per_prompt_stat_tracking = {
|
||||
"buffer_size": 16,
|
||||
"min_count": 16,
|
||||
}
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def incompressibility():
|
||||
config = compressibility()
|
||||
config.reward_fn = "jpeg_incompressibility"
|
||||
return config
|
||||
|
||||
|
||||
def aesthetic():
|
||||
config = compressibility()
|
||||
config.num_epochs = 200
|
||||
config.reward_fn = "aesthetic_score"
|
||||
|
||||
# this reward is a bit harder to optimize, so I used 2 gradient updates per epoch.
|
||||
config.train.gradient_accumulation_steps = 4
|
||||
|
||||
config.prompt_fn = "simple_animals"
|
||||
config.per_prompt_stat_tracking = {
|
||||
"buffer_size": 32,
|
||||
"min_count": 16,
|
||||
}
|
||||
return config
|
||||
|
||||
|
||||
def prompt_image_alignment():
|
||||
config = compressibility()
|
||||
|
||||
config.num_epochs = 200
|
||||
# for this experiment, I reserved 2 GPUs for LLaVA inference so only 6 could be used for DDPO. the total number of
|
||||
# samples per epoch is 8 * 6 * 6 = 288.
|
||||
config.sample.batch_size = 8
|
||||
config.sample.num_batches_per_epoch = 6
|
||||
|
||||
# again, this one is harder to optimize, so I used (8 * 6) / (4 * 6) = 2 gradient updates per epoch.
|
||||
config.train.batch_size = 4
|
||||
config.train.gradient_accumulation_steps = 6
|
||||
|
||||
# prompting
|
||||
config.prompt_fn = "nouns_activities"
|
||||
config.prompt_fn_kwargs = {
|
||||
"nouns_file": "simple_animals.txt",
|
||||
"activities_file": "activities.txt",
|
||||
}
|
||||
|
||||
# rewards
|
||||
config.reward_fn = "llava_bertscore"
|
||||
|
||||
config.per_prompt_stat_tracking = {
|
||||
"buffer_size": 32,
|
||||
"min_count": 16,
|
||||
}
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def get_config(name):
|
||||
return globals()[name]()
|
||||
|
Reference in New Issue
Block a user