ddpo-pytorch/scripts/train.py
2023-06-23 19:25:54 -07:00

342 lines
15 KiB
Python

from absl import app, flags, logging
from ml_collections import config_flags
from accelerate import Accelerator
from accelerate.utils import set_seed
from accelerate.logging import get_logger
from diffusers import StableDiffusionPipeline, DDIMScheduler
from diffusers.loaders import AttnProcsLayers
from diffusers.models.attention_processor import LoRAAttnProcessor
import ddpo_pytorch.prompts
import ddpo_pytorch.rewards
from ddpo_pytorch.stat_tracking import PerPromptStatTracker
from ddpo_pytorch.diffusers_patch.pipeline_with_logprob import pipeline_with_logprob
from ddpo_pytorch.diffusers_patch.ddim_with_logprob import ddim_step_with_logprob
import torch
import tqdm
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file("config", "config/base.py", "Training configuration.")
logger = get_logger(__name__)
def main(_):
# basic Accelerate and logging setup
config = FLAGS.config
accelerator = Accelerator(
log_with="all",
mixed_precision=config.mixed_precision,
project_dir=config.logdir,
)
if accelerator.is_main_process:
accelerator.init_trackers(project_name="ddpo-pytorch", config=config)
logger.info(config)
# set seed
set_seed(config.seed)
# load scheduler, tokenizer and models.
pipeline = StableDiffusionPipeline.from_pretrained(config.pretrained.model, revision=config.pretrained.revision)
# freeze parameters of models to save more memory
pipeline.unet.requires_grad_(False)
pipeline.vae.requires_grad_(False)
pipeline.text_encoder.requires_grad_(False)
# disable safety checker
pipeline.safety_checker = None
# make the progress bar nicer
pipeline.set_progress_bar_config(
position=1,
disable=not accelerator.is_local_main_process,
leave=False,
)
# switch to DDIM scheduler
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move unet, vae and text_encoder to device and cast to weight_dtype
pipeline.unet.to(accelerator.device, dtype=weight_dtype)
pipeline.vae.to(accelerator.device, dtype=weight_dtype)
pipeline.text_encoder.to(accelerator.device, dtype=weight_dtype)
# Set correct lora layers
lora_attn_procs = {}
for name in pipeline.unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else pipeline.unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = pipeline.unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(pipeline.unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = pipeline.unet.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
pipeline.unet.set_attn_processor(lora_attn_procs)
lora_layers = AttnProcsLayers(pipeline.unet.attn_processors)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if config.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if config.train.scale_lr:
config.train.learning_rate = (
config.train.learning_rate
* config.train.gradient_accumulation_steps
* config.train.batch_size
* accelerator.num_processes
)
# Initialize the optimizer
if config.train.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
optimizer = optimizer_cls(
lora_layers.parameters(),
lr=config.train.learning_rate,
betas=(config.train.adam_beta1, config.train.adam_beta2),
weight_decay=config.train.adam_weight_decay,
eps=config.train.adam_epsilon,
)
# prepare prompt and reward fn
prompt_fn = getattr(ddpo_pytorch.prompts, config.prompt_fn)
reward_fn = getattr(ddpo_pytorch.rewards, config.reward_fn)()
# Prepare everything with our `accelerator`.
lora_layers, optimizer = accelerator.prepare(lora_layers, optimizer)
# Train!
samples_per_epoch = config.sample.batch_size * accelerator.num_processes * config.sample.num_batches_per_epoch
total_train_batch_size = (
config.train.batch_size * accelerator.num_processes * config.train.gradient_accumulation_steps
)
assert config.sample.batch_size % config.train.batch_size == 0
assert samples_per_epoch % total_train_batch_size == 0
logger.info("***** Running training *****")
logger.info(f" Num Epochs = {config.num_epochs}")
logger.info(f" Sample batch size per device = {config.sample.batch_size}")
logger.info(f" Train batch size per device = {config.train.batch_size}")
logger.info(f" Gradient Accumulation steps = {config.train.gradient_accumulation_steps}")
logger.info("")
logger.info(f" Total number of samples per epoch = {samples_per_epoch}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
logger.info(f" Number of gradient updates per inner epoch = {samples_per_epoch // total_train_batch_size}")
logger.info(f" Number of inner epochs = {config.train.num_inner_epochs}")
neg_prompt_embed = pipeline.text_encoder(
pipeline.tokenizer(
[""],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=pipeline.tokenizer.model_max_length,
).input_ids.to(accelerator.device)
)[0]
sample_neg_prompt_embeds = neg_prompt_embed.repeat(config.sample.batch_size, 1, 1)
train_neg_prompt_embeds = neg_prompt_embed.repeat(config.train.batch_size, 1, 1)
if config.per_prompt_stat_tracking:
stat_tracker = PerPromptStatTracker(
config.per_prompt_stat_tracking.buffer_size,
config.per_prompt_stat_tracking.min_count,
)
for epoch in range(config.num_epochs):
#################### SAMPLING ####################
samples = []
prompts = []
for i in tqdm.tqdm(
range(config.sample.num_batches_per_epoch),
desc=f"Epoch {epoch}: sampling",
disable=not accelerator.is_local_main_process,
position=0,
):
# generate prompts
prompts, prompt_metadata = zip(
*[prompt_fn(**config.prompt_fn_kwargs) for _ in range(config.sample.batch_size)]
)
# encode prompts
prompt_ids = pipeline.tokenizer(
prompts,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=pipeline.tokenizer.model_max_length,
).input_ids.to(accelerator.device)
prompt_embeds = pipeline.text_encoder(prompt_ids)[0]
# sample
pipeline.unet.eval()
pipeline.vae.eval()
images, _, latents, log_probs = pipeline_with_logprob(
pipeline,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=sample_neg_prompt_embeds,
num_inference_steps=config.sample.num_steps,
guidance_scale=config.sample.guidance_scale,
eta=config.sample.eta,
output_type="pt",
)
latents = torch.stack(latents, dim=1) # (batch_size, num_steps + 1, 4, 64, 64)
log_probs = torch.stack(log_probs, dim=1) # (batch_size, num_steps, 1)
timesteps = pipeline.scheduler.timesteps.repeat(config.sample.batch_size, 1) # (batch_size, num_steps)
# compute rewards
rewards, reward_metadata = reward_fn(images, prompts, prompt_metadata)
samples.append(
{
"prompt_ids": prompt_ids,
"prompt_embeds": prompt_embeds,
"timesteps": timesteps,
"latents": latents[:, :-1], # each entry is the latent before timestep t
"next_latents": latents[:, 1:], # each entry is the latent after timestep t
"log_probs": log_probs,
"rewards": torch.as_tensor(rewards),
}
)
# collate samples into dict where each entry has shape (num_batches_per_epoch * sample.batch_size, ...)
samples = {k: torch.cat([s[k] for s in samples]) for k in samples[0].keys()}
# gather rewards across processes
rewards = accelerator.gather(samples["rewards"]).cpu().numpy()
# per-prompt mean/std tracking
if config.per_prompt_stat_tracking:
# gather the prompts across processes
prompt_ids = accelerator.gather(samples["prompt_ids"]).cpu().numpy()
prompts = pipeline.tokenizer.batch_decode(prompt_ids, skip_special_tokens=True)
advantages = stat_tracker.update(prompts, rewards)
else:
advantages = (rewards - rewards.mean()) / (rewards.std() + 1e-8)
# ungather advantages; we only need to keep the entries corresponding to the samples on this process
samples["advantages"] = (
torch.as_tensor(advantages)
.reshape(accelerator.num_processes, -1)[accelerator.process_index]
.to(accelerator.device)
)
del samples["rewards"]
del samples["prompt_ids"]
total_batch_size, num_timesteps = samples["timesteps"].shape
assert total_batch_size == config.sample.batch_size * config.sample.num_batches_per_epoch
assert num_timesteps == config.sample.num_steps
#################### TRAINING ####################
for inner_epoch in range(config.train.num_inner_epochs):
# shuffle samples along batch dimension
indices = torch.randperm(total_batch_size, device=accelerator.device)
samples = {k: v[indices] for k, v in samples.items()}
# shuffle along time dimension, independently for each sample
for i in range(total_batch_size):
indices = torch.randperm(num_timesteps, device=accelerator.device)
for key in ["timesteps", "latents", "next_latents"]:
samples[key][i] = samples[key][i][indices]
# rebatch for training
samples_batched = {k: v.reshape(-1, config.train.batch_size, *v.shape[1:]) for k, v in samples.items()}
# dict of lists -> list of dicts for easier iteration
samples_batched = [dict(zip(samples_batched, x)) for x in zip(*samples_batched.values())]
# train
for i, sample in tqdm.tqdm(
list(enumerate(samples_batched)),
desc=f"Outer epoch {epoch}, inner epoch {inner_epoch}: training",
position=0,
):
if config.train.cfg:
# concat negative prompts to sample prompts to avoid two forward passes
embeds = torch.cat([train_neg_prompt_embeds, sample["prompt_embeds"]])
else:
embeds = sample["prompt_embeds"]
for j in tqdm.trange(
num_timesteps,
desc=f"Timestep",
position=1,
leave=False,
):
with accelerator.accumulate(pipeline.unet):
if config.train.cfg:
noise_pred = pipeline.unet(
torch.cat([sample["latents"][:, j]] * 2),
torch.cat([sample["timesteps"][:, j]] * 2),
embeds,
).sample
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + config.sample.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
else:
noise_pred = pipeline.unet(
sample["latents"][:, j], sample["timesteps"][:, j], embeds
).sample
_, log_prob = ddim_step_with_logprob(
pipeline.scheduler,
noise_pred,
sample["timesteps"][:, j],
sample["latents"][:, j],
eta=config.sample.eta,
prev_sample=sample["next_latents"][:, j],
)
# ppo logic
advantages = torch.clamp(
sample["advantages"][:, j], -config.train.adv_clip_max, config.train.adv_clip_max
)
ratio = torch.exp(log_prob - sample["log_probs"][:, j])
unclipped_loss = -advantages * ratio
clipped_loss = -advantages * torch.clamp(
ratio, 1.0 - config.train.clip_range, 1.0 + config.train.clip_range
)
loss = torch.mean(torch.maximum(unclipped_loss, clipped_loss))
# debugging values
info = {}
# John Schulman says that (ratio - 1) - log(ratio) is a better
# estimator, but most existing code uses this so...
# http://joschu.net/blog/kl-approx.html
info["approx_kl"] = 0.5 * torch.mean((log_prob - sample["log_probs"][:, j]) ** 2)
info["clipfrac"] = torch.mean(torch.abs(ratio - 1.0) > config.train.clip_range)
info["loss"] = loss
# backward pass
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(lora_layers.parameters(), config.train.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
if __name__ == "__main__":
app.run(main)