diffusionNAG/MobileNetV3/main_exp/get_files/get_preprocessed_data.py
2024-03-15 14:38:51 +00:00

47 lines
1.7 KiB
Python

###########################################################################################
# Copyright (c) Hayeon Lee, Eunyoung Hyung [GitHub MetaD2A], 2021
# Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets, ICLR 2021
###########################################################################################
import os
from tqdm import tqdm
import requests
from all_path import PROCESSED_DATA_PATH
dir_path = PROCESSED_DATA_PATH
if not os.path.exists(dir_path):
os.makedirs(dir_path)
def download_file(url, filename):
"""
Helper method handling downloading large files from `url`
to `filename`. Returns a pointer to `filename`.
"""
chunkSize = 1024
r = requests.get(url, stream=True)
with open(filename, 'wb') as f:
pbar = tqdm( unit="B", total=int( r.headers['Content-Length'] ) )
for chunk in r.iter_content(chunk_size=chunkSize):
if chunk: # filter out keep-alive new chunks
pbar.update (len(chunk))
f.write(chunk)
return filename
def get_preprocessed_data(file_name, url):
print(f"Downloading {file_name} datasets\n")
full_name = os.path.join(dir_path, file_name)
download_file(url, full_name)
print("Downloading done.\n")
for file_name, url in [
('aircraftbylabel.pt', 'https://www.dropbox.com/s/nn6mlrk1jijg108/aircraft100bylabel.pt?dl=1'),
('cifar100bylabel.pt', 'https://www.dropbox.com/s/nn6mlrk1jijg108/aircraft100bylabel.pt?dl=1'),
('cifar10bylabel.pt', 'https://www.dropbox.com/s/wt1pcwi991xyhwr/cifar10bylabel.pt?dl=1'),
('imgnet32bylabel.pt', 'https://www.dropbox.com/s/7r3hpugql8qgi9d/imgnet32bylabel.pt?dl=1'),
('petsbylabel.pt', 'https://www.dropbox.com/s/mxh6qz3grhy7wcn/petsbylabel.pt?dl=1'),
]:
get_preprocessed_data(file_name, url)