################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # ################################################## import torch import torch.nn as nn __all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames'] OPS = { 'none' : lambda C_in, C_out, stride, affine, track_running_stats: Zero(C_in, C_out, stride), 'avg_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'avg', affine, track_running_stats), 'max_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'max', affine, track_running_stats), 'nor_conv_7x7' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1), affine, track_running_stats), 'nor_conv_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats), 'nor_conv_1x1' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1), affine, track_running_stats), 'dua_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats), 'dua_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (5,5), (stride,stride), (2,2), (1,1), affine, track_running_stats), 'dil_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (3,3), (stride,stride), (2,2), (2,2), affine, track_running_stats), 'dil_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (5,5), (stride,stride), (4,4), (2,2), affine, track_running_stats), 'skip_connect' : lambda C_in, C_out, stride, affine, track_running_stats: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats), } CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3'] NAS_BENCH_201 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] DARTS_SPACE = ['none', 'skip_connect', 'dua_sepc_3x3', 'dua_sepc_5x5', 'dil_sepc_3x3', 'dil_sepc_5x5', 'avg_pool_3x3', 'max_pool_3x3'] SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK, 'nas-bench-201': NAS_BENCH_201, 'darts' : DARTS_SPACE} class ReLUConvBN(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True): super(ReLUConvBN, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False), nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) ) def forward(self, x): return self.op(x) class SepConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True): super(SepConv, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats), ) def forward(self, x): return self.op(x) class DualSepConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True): super(DualSepConv, self).__init__() self.op_a = SepConv(C_in, C_in , kernel_size, stride, padding, dilation, affine, track_running_stats) self.op_b = SepConv(C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats) def forward(self, x): x = self.op_a(x) x = self.op_b(x) return x class ResNetBasicblock(nn.Module): def __init__(self, inplanes, planes, stride, affine=True): super(ResNetBasicblock, self).__init__() assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine) self.conv_b = ReLUConvBN( planes, planes, 3, 1, 1, 1, affine) if stride == 2: self.downsample = nn.Sequential( nn.AvgPool2d(kernel_size=2, stride=2, padding=0), nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False)) elif inplanes != planes: self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine) else: self.downsample = None self.in_dim = inplanes self.out_dim = planes self.stride = stride self.num_conv = 2 def extra_repr(self): string = '{name}(inC={in_dim}, outC={out_dim}, stride={stride})'.format(name=self.__class__.__name__, **self.__dict__) return string def forward(self, inputs): basicblock = self.conv_a(inputs) basicblock = self.conv_b(basicblock) if self.downsample is not None: residual = self.downsample(inputs) else: residual = inputs return residual + basicblock class POOLING(nn.Module): def __init__(self, C_in, C_out, stride, mode, affine=True, track_running_stats=True): super(POOLING, self).__init__() if C_in == C_out: self.preprocess = None else: self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 1, affine, track_running_stats) if mode == 'avg' : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1) else : raise ValueError('Invalid mode={:} in POOLING'.format(mode)) def forward(self, inputs): if self.preprocess: x = self.preprocess(inputs) else : x = inputs return self.op(x) class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class Zero(nn.Module): def __init__(self, C_in, C_out, stride): super(Zero, self).__init__() self.C_in = C_in self.C_out = C_out self.stride = stride self.is_zero = True def forward(self, x): if self.C_in == self.C_out: if self.stride == 1: return x.mul(0.) else : return x[:,:,::self.stride,::self.stride].mul(0.) else: shape = list(x.shape) shape[1] = self.C_out zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device) return zeros def extra_repr(self): return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__) class FactorizedReduce(nn.Module): def __init__(self, C_in, C_out, stride, affine, track_running_stats): super(FactorizedReduce, self).__init__() self.stride = stride self.C_in = C_in self.C_out = C_out self.relu = nn.ReLU(inplace=False) if stride == 2: #assert C_out % 2 == 0, 'C_out : {:}'.format(C_out) C_outs = [C_out // 2, C_out - C_out // 2] self.convs = nn.ModuleList() for i in range(2): self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False) ) self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) elif stride == 1: self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=False) else: raise ValueError('Invalid stride : {:}'.format(stride)) self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) def forward(self, x): if self.stride == 2: x = self.relu(x) y = self.pad(x) out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1) else: out = self.conv(x) out = self.bn(out) return out def extra_repr(self): return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__) # Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019 class PartAwareOp(nn.Module): def __init__(self, C_in, C_out, stride, part=4): super().__init__() self.part = 4 self.hidden = C_in // 3 self.avg_pool = nn.AdaptiveAvgPool2d(1) self.local_conv_list = nn.ModuleList() for i in range(self.part): self.local_conv_list.append( nn.Sequential(nn.ReLU(), nn.Conv2d(C_in, self.hidden, 1), nn.BatchNorm2d(self.hidden, affine=True)) ) self.W_K = nn.Linear(self.hidden, self.hidden) self.W_Q = nn.Linear(self.hidden, self.hidden) if stride == 2 : self.last = FactorizedReduce(C_in + self.hidden, C_out, 2) elif stride == 1: self.last = FactorizedReduce(C_in + self.hidden, C_out, 1) else: raise ValueError('Invalid Stride : {:}'.format(stride)) def forward(self, x): batch, C, H, W = x.size() assert H >= self.part, 'input size too small : {:} vs {:}'.format(x.shape, self.part) IHs = [0] for i in range(self.part): IHs.append( min(H, int((i+1)*(float(H)/self.part))) ) local_feat_list = [] for i in range(self.part): feature = x[:, :, IHs[i]:IHs[i+1], :] xfeax = self.avg_pool(feature) xfea = self.local_conv_list[i]( xfeax ) local_feat_list.append( xfea ) part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part) part_feature = part_feature.transpose(1,2).contiguous() part_K = self.W_K(part_feature) part_Q = self.W_Q(part_feature).transpose(1,2).contiguous() weight_att = torch.bmm(part_K, part_Q) attention = torch.softmax(weight_att, dim=2) aggreateF = torch.bmm(attention, part_feature).transpose(1,2).contiguous() features = [] for i in range(self.part): feature = aggreateF[:, :, i:i+1].expand(batch, self.hidden, IHs[i+1]-IHs[i]) feature = feature.view(batch, self.hidden, IHs[i+1]-IHs[i], 1) features.append( feature ) features = torch.cat(features, dim=2).expand(batch, self.hidden, H, W) final_fea = torch.cat((x,features), dim=1) outputs = self.last( final_fea ) return outputs # Searching for A Robust Neural Architecture in Four GPU Hours class GDAS_Reduction_Cell(nn.Module): def __init__(self, C_prev_prev, C_prev, C, reduction_prev, multiplier, affine, track_running_stats): super(GDAS_Reduction_Cell, self).__init__() if reduction_prev: self.preprocess0 = FactorizedReduce(C_prev_prev, C, 2, affine, track_running_stats) else: self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats) self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, 1, affine, track_running_stats) self.multiplier = multiplier self.reduction = True self.ops1 = nn.ModuleList( [nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False), nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False), nn.BatchNorm2d(C, affine=True), nn.ReLU(inplace=False), nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(C, affine=True)), nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False), nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False), nn.BatchNorm2d(C, affine=True), nn.ReLU(inplace=False), nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(C, affine=True))]) self.ops2 = nn.ModuleList( [nn.Sequential( nn.MaxPool2d(3, stride=1, padding=1), nn.BatchNorm2d(C, affine=True)), nn.Sequential( nn.MaxPool2d(3, stride=2, padding=1), nn.BatchNorm2d(C, affine=True))]) def forward(self, s0, s1, drop_prob = -1): s0 = self.preprocess0(s0) s1 = self.preprocess1(s1) X0 = self.ops1[0] (s0) X1 = self.ops1[1] (s1) if self.training and drop_prob > 0.: X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob) #X2 = self.ops2[0] (X0+X1) X2 = self.ops2[0] (s0) X3 = self.ops2[1] (s1) if self.training and drop_prob > 0.: X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob) return torch.cat([X0, X1, X2, X3], dim=1)