173 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			173 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Deep Residual Learning for Image Recognition, CVPR 2016
 | |
| import torch.nn as nn
 | |
| from .initialization import initialize_resnet
 | |
| 
 | |
| def conv3x3(in_planes, out_planes, stride=1, groups=1):
 | |
|   return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False)
 | |
| 
 | |
| 
 | |
| def conv1x1(in_planes, out_planes, stride=1):
 | |
|   return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
 | |
| 
 | |
| 
 | |
| class BasicBlock(nn.Module):
 | |
|   expansion = 1
 | |
| 
 | |
|   def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64):
 | |
|     super(BasicBlock, self).__init__()
 | |
|     if groups != 1 or base_width != 64:
 | |
|       raise ValueError('BasicBlock only supports groups=1 and base_width=64')
 | |
|     # Both self.conv1 and self.downsample layers downsample the input when stride != 1
 | |
|     self.conv1 = conv3x3(inplanes, planes, stride)
 | |
|     self.bn1   = nn.BatchNorm2d(planes)
 | |
|     self.relu  = nn.ReLU(inplace=True)
 | |
|     self.conv2 = conv3x3(planes, planes)
 | |
|     self.bn2   = nn.BatchNorm2d(planes)
 | |
|     self.downsample = downsample
 | |
|     self.stride = stride
 | |
| 
 | |
|   def forward(self, x):
 | |
|     identity = x
 | |
| 
 | |
|     out = self.conv1(x)
 | |
|     out = self.bn1(out)
 | |
|     out = self.relu(out)
 | |
| 
 | |
|     out = self.conv2(out)
 | |
|     out = self.bn2(out)
 | |
| 
 | |
|     if self.downsample is not None:
 | |
|       identity = self.downsample(x)
 | |
| 
 | |
|     out += identity
 | |
|     out = self.relu(out)
 | |
| 
 | |
|     return out
 | |
| 
 | |
| 
 | |
| class Bottleneck(nn.Module):
 | |
|   expansion = 4
 | |
| 
 | |
|   def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64):
 | |
|     super(Bottleneck, self).__init__()
 | |
|     width = int(planes * (base_width / 64.)) * groups
 | |
|     # Both self.conv2 and self.downsample layers downsample the input when stride != 1
 | |
|     self.conv1 = conv1x1(inplanes, width)
 | |
|     self.bn1   = nn.BatchNorm2d(width)
 | |
|     self.conv2 = conv3x3(width, width, stride, groups)
 | |
|     self.bn2   = nn.BatchNorm2d(width)
 | |
|     self.conv3 = conv1x1(width, planes * self.expansion)
 | |
|     self.bn3   = nn.BatchNorm2d(planes * self.expansion)
 | |
|     self.relu  = nn.ReLU(inplace=True)
 | |
|     self.downsample = downsample
 | |
|     self.stride = stride
 | |
| 
 | |
|   def forward(self, x):
 | |
|     identity = x
 | |
| 
 | |
|     out = self.conv1(x)
 | |
|     out = self.bn1(out)
 | |
|     out = self.relu(out)
 | |
| 
 | |
|     out = self.conv2(out)
 | |
|     out = self.bn2(out)
 | |
|     out = self.relu(out)
 | |
| 
 | |
|     out = self.conv3(out)
 | |
|     out = self.bn3(out)
 | |
| 
 | |
|     if self.downsample is not None:
 | |
|       identity = self.downsample(x)
 | |
| 
 | |
|     out += identity
 | |
|     out = self.relu(out)
 | |
| 
 | |
|     return out
 | |
| 
 | |
| 
 | |
| class ResNet(nn.Module):
 | |
| 
 | |
|   def __init__(self, block_name, layers, deep_stem, num_classes, zero_init_residual, groups, width_per_group):
 | |
|     super(ResNet, self).__init__()
 | |
| 
 | |
|     #planes = [int(width_per_group * groups * 2 ** i) for i in range(4)]
 | |
|     if block_name == 'BasicBlock'  : block= BasicBlock
 | |
|     elif block_name == 'Bottleneck': block= Bottleneck
 | |
|     else                           : raise ValueError('invalid block-name : {:}'.format(block_name))
 | |
| 
 | |
|     if not deep_stem:
 | |
|       self.conv = nn.Sequential(
 | |
|                    nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
 | |
|                    nn.BatchNorm2d(64), nn.ReLU(inplace=True))
 | |
|     else:
 | |
|       self.conv = nn.Sequential(
 | |
|                    nn.Conv2d(           3, 32, kernel_size=3, stride=2, padding=1, bias=False),
 | |
|                    nn.BatchNorm2d(32), nn.ReLU(inplace=True),
 | |
|                    nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False),
 | |
|                    nn.BatchNorm2d(32), nn.ReLU(inplace=True),
 | |
|                    nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False),
 | |
|                    nn.BatchNorm2d(64), nn.ReLU(inplace=True))
 | |
|     self.inplanes = 64
 | |
|     self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
 | |
|     self.layer1 = self._make_layer(block, 64 , layers[0], stride=1, groups=groups, base_width=width_per_group)
 | |
|     self.layer2 = self._make_layer(block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group)
 | |
|     self.layer3 = self._make_layer(block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group)
 | |
|     self.layer4 = self._make_layer(block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group)
 | |
|     self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
 | |
|     self.fc      = nn.Linear(512 * block.expansion, num_classes)
 | |
|     self.message = 'block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}'.format(block, layers, deep_stem, num_classes)
 | |
| 
 | |
|     self.apply( initialize_resnet )
 | |
| 
 | |
|     # Zero-initialize the last BN in each residual branch,
 | |
|     # so that the residual branch starts with zeros, and each residual block behaves like an identity.
 | |
|     # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
 | |
|     if zero_init_residual:
 | |
|       for m in self.modules():
 | |
|         if isinstance(m, Bottleneck):
 | |
|           nn.init.constant_(m.bn3.weight, 0)
 | |
|         elif isinstance(m, BasicBlock):
 | |
|           nn.init.constant_(m.bn2.weight, 0)
 | |
| 
 | |
|   def _make_layer(self, block, planes, blocks, stride, groups, base_width):
 | |
|     downsample = None
 | |
|     if stride != 1 or self.inplanes != planes * block.expansion:
 | |
|       if stride == 2:
 | |
|         downsample = nn.Sequential(
 | |
|           nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
 | |
|           conv1x1(self.inplanes, planes * block.expansion, 1),
 | |
|           nn.BatchNorm2d(planes * block.expansion),
 | |
|         )
 | |
|       elif stride == 1:
 | |
|         downsample = nn.Sequential(
 | |
|           conv1x1(self.inplanes, planes * block.expansion, stride),
 | |
|           nn.BatchNorm2d(planes * block.expansion),
 | |
|         )
 | |
|       else: raise ValueError('invalid stride [{:}] for downsample'.format(stride))
 | |
| 
 | |
|     layers = []
 | |
|     layers.append(block(self.inplanes, planes, stride, downsample, groups, base_width))
 | |
|     self.inplanes = planes * block.expansion
 | |
|     for _ in range(1, blocks):
 | |
|       layers.append(block(self.inplanes, planes, 1, None, groups, base_width))
 | |
| 
 | |
|     return nn.Sequential(*layers)
 | |
| 
 | |
|   def get_message(self):
 | |
|     return self.message
 | |
| 
 | |
|   def forward(self, x):
 | |
|     x = self.conv(x)
 | |
|     x = self.maxpool(x)
 | |
| 
 | |
|     x = self.layer1(x)
 | |
|     x = self.layer2(x)
 | |
|     x = self.layer3(x)
 | |
|     x = self.layer4(x)
 | |
| 
 | |
|     features = self.avgpool(x)
 | |
|     features = features.view(features.size(0), -1)
 | |
|     logits   = self.fc(features)
 | |
| 
 | |
|     return features, logits
 |