add generate price and read data
This commit is contained in:
		
							
								
								
									
										52
									
								
								read_data.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										52
									
								
								read_data.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,52 @@ | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
| import csv | ||||
|  | ||||
| df_sunlight = pd.read_excel('lightintensity.xlsx', header=None, names=['SunlightIntensity']) | ||||
|  | ||||
| start_date = '2023-01-01 00:00:00'  # 根据数据的实际开始日期调整 | ||||
| hours = pd.date_range(start=start_date, periods=len(df_sunlight), freq='h') | ||||
| df_sunlight['Time'] = hours | ||||
| df_sunlight.set_index('Time', inplace=True) | ||||
|  | ||||
| df_sunlight_resampled = df_sunlight.resample('15min').interpolate() | ||||
|  | ||||
| df_power = pd.read_excel('factory_power.xlsx',  | ||||
|                          header=None,  | ||||
|                          names=['FactoryPower'],  | ||||
|                          dtype={'FactoryPower': float}) | ||||
| times = pd.date_range(start=start_date, periods=len(df_power), freq='15min') | ||||
| df_power['Time'] = times | ||||
| df_power.set_index('Time',inplace=True) | ||||
| print(df_power.head()) | ||||
|  | ||||
| df_combined = df_sunlight_resampled.join(df_power) | ||||
|  | ||||
| df_combined.to_csv('combined_data.csv', index=True, index_label='Time') | ||||
|  | ||||
| price_data = np.random.uniform(0.3, 0.3, len(times)) | ||||
|  | ||||
| # 创建DataFrame | ||||
| price_df = pd.DataFrame(data={'Time': times, 'ElectricityPrice': price_data}) | ||||
|  | ||||
| price_df.set_index('Time', inplace=True) | ||||
|  | ||||
| # 保存到CSV文件 | ||||
| price_df.to_csv('electricity_price_data.csv', index=True) | ||||
| print(price_df.head()) | ||||
| print("Electricity price data generated and saved.") | ||||
|  | ||||
| df_combined2 = df_combined.join(price_df) | ||||
| print(df_combined2.head()) | ||||
| # 保存结果 | ||||
| with open('combined_data.csv', 'w', newline='') as file: | ||||
|     writer = csv.writer(file) | ||||
|     writer.writerow(['time', 'sunlight', 'demand','price']) | ||||
|     for index, row in df_combined2.iterrows(): | ||||
|         time_formatted = index.strftime('%H:%M') | ||||
|         writer.writerow([time_formatted, row['SunlightIntensity'], row['FactoryPower'],row['ElectricityPrice']]) | ||||
|     print('The file is written to combined_data.csv') | ||||
|  | ||||
| # combined_data.to_csv('updated_simulation_with_prices.csv', index=False) | ||||
|  | ||||
| print("Simulation data with electricity prices has been updated and saved.") | ||||
		Reference in New Issue
	
	Block a user