add some old code
This commit is contained in:
		
							
								
								
									
										19
									
								
								old/generate_electricity_price.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								old/generate_electricity_price.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,19 @@ | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
|  | ||||
| start_date = '2023-01-01' | ||||
| end_date = '2024-01-01' | ||||
|  | ||||
| # 创建时间索引 | ||||
| time_index = pd.date_range(start=start_date, end=end_date, freq='15min') | ||||
|  | ||||
| # 生成电价数据,假设电价在0.28到0.32欧元/kWh之间波动 | ||||
| price_data = np.random.uniform(0.28, 0.32, len(time_index)) | ||||
|  | ||||
| # 创建DataFrame | ||||
| price_df = pd.DataFrame(data={'Time': time_index, 'ElectricityPrice': price_data}) | ||||
|  | ||||
| # 保存到CSV文件 | ||||
| price_df.to_csv('electricity_price_data.csv', index=False) | ||||
|  | ||||
| print("Electricity price data generated and saved.") | ||||
							
								
								
									
										56
									
								
								old/generatedata.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										56
									
								
								old/generatedata.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,56 @@ | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
|  | ||||
| # 设置随机种子以重现结果 | ||||
| np.random.seed(43) | ||||
|  | ||||
| def simulate_sunlight(hour, month): | ||||
|     # 假设最大日照强度在正午,根据月份调整最大日照强度 | ||||
|     max_intensity = 1.0  # 夏季最大日照强度 | ||||
|     if month in [12, 1, 2]:  # 冬季 | ||||
|         max_intensity = 0.6 | ||||
|     elif month in [3, 4, 10, 11]:  # 春秋 | ||||
|         max_intensity = 0.8 | ||||
|      | ||||
|     # 计算日照强度,模拟早晚日照弱,中午日照强 | ||||
|     intensity = max_intensity * np.sin(np.pi * (hour - 6) / 12)**2 if 6 <= hour <= 18 else 0 | ||||
|     return intensity | ||||
|  | ||||
| def simulate_factory_demand(hour, day_of_week): | ||||
|     # 周末工厂需求可能减少 | ||||
|     if day_of_week in [5, 6]:  # 周六和周日 | ||||
|         base_demand = 3000 | ||||
|     else: | ||||
|         base_demand = 6000 | ||||
|      | ||||
|     # 日常波动 | ||||
|     if 8 <= hour <= 20: | ||||
|         return base_demand + np.random.randint(100, 200)  # 白天需求量大 | ||||
|     else: | ||||
|         return base_demand - np.random.randint(0, 100)  # 夜间需求量小 | ||||
|  | ||||
| def generate_data(days=10): | ||||
|     records = [] | ||||
|     month_demand = 0 | ||||
|     for day in range(days): | ||||
|         month = (day % 365) // 30 + 1 | ||||
|         day_of_week = day % 7 | ||||
|         day_demand = 0 | ||||
|         for hour in range(24): | ||||
|             for minute in [0, 10, 20, 30, 40, 50]: | ||||
|                 time = f'{hour:02d}:{minute:02d}' | ||||
|                 sunlight = simulate_sunlight(hour, month) | ||||
|                 demand = simulate_factory_demand(hour, day_of_week) | ||||
|                 day_demand+=demand | ||||
|                 records.append({'time': time, 'sunlight': sunlight, 'demand': demand}) | ||||
|         print(f"day:{day}, day_demand: {day_demand}") | ||||
|         month_demand += day_demand | ||||
|         if day%30 == 0: | ||||
|             print(f"month:{month}, month_demand:{month_demand}") | ||||
|             month_demand = 0 | ||||
|     return pd.DataFrame(records) | ||||
|  | ||||
| # 生成数据 | ||||
| data = generate_data(365)  # 模拟一年的数据 | ||||
| data.to_csv('simulation_data.csv', index=False) | ||||
| print("Data generated and saved to simulation_data.csv.") | ||||
							
								
								
									
										24
									
								
								old/generatepriceschedule.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								old/generatepriceschedule.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
|  | ||||
| def generate_price_schedule(): | ||||
|     records = [] | ||||
|     # 假设一天分为三个时段:谷时、平时、峰时 | ||||
|     times = [('00:00', '06:00', 0.25),   | ||||
|              ('06:00', '18:00', 0.3),   | ||||
|              ('18:00', '24:00', 0.35)]   | ||||
|      | ||||
|     # 随机调整每天的电价以增加现实性 | ||||
|     for time_start, time_end, base_price in times: | ||||
|         # 随机浮动5%以内 | ||||
|         fluctuation = np.random.uniform(-0.005, 0.005) | ||||
|         price = round(base_price + fluctuation, 3) | ||||
|         records.append({'time_start': time_start, 'time_end': time_end, 'price': price}) | ||||
|      | ||||
|     return pd.DataFrame(records) | ||||
|  | ||||
| # 生成电价计划 | ||||
| price_schedule = generate_price_schedule() | ||||
| price_schedule.to_csv('price_schedule.csv', index=False) | ||||
| print("Price schedule generated and saved to price_schedule.csv.") | ||||
| print(price_schedule) | ||||
							
								
								
									
										4
									
								
								old/price_schedule.csv
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								old/price_schedule.csv
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,4 @@ | ||||
| time_start,time_end,price | ||||
| 00:00,06:00,0.247 | ||||
| 06:00,18:00,0.3 | ||||
| 18:00,24:00,0.349 | ||||
| 
 | 
							
								
								
									
										52561
									
								
								old/simulation_data.csv
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										52561
									
								
								old/simulation_data.csv
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
		Reference in New Issue
	
	Block a user