Compare commits
12 Commits
9d143399ed
...
0.0.7
Author | SHA1 | Date | |
---|---|---|---|
|
df2f953678 | ||
|
3740136d7c | ||
|
e04e01e943 | ||
|
9f472b4bf4 | ||
|
127f005dcd | ||
|
c5edf456c5 | ||
|
d8ece46e14 | ||
|
566ebca6cd | ||
|
c8c37b756c | ||
|
4f1a47d505 | ||
|
ad9b5e6a19 | ||
|
33871fba77 |
@@ -21,6 +21,13 @@ class EnergySystem:
|
||||
self.summer_week_soc = []
|
||||
self.autumn_week_soc = []
|
||||
self.winter_week_soc = []
|
||||
self.factory_demand = []
|
||||
self.buy_price_kWh = []
|
||||
self.sell_price_kWh = []
|
||||
self.pv_generated_kWh = []
|
||||
self.grid_need_power_kW = []
|
||||
self.time = []
|
||||
self.ess_rest = 0
|
||||
self.granularity = 4
|
||||
self.season_step = self.granularity * 24 * 7 * 12
|
||||
self.season_start= self.granularity * 24 * 7 * 2
|
||||
@@ -37,9 +44,12 @@ class EnergySystem:
|
||||
total_benefit = 0
|
||||
total_netto_benefit = 0
|
||||
total_gen = 0
|
||||
net_grid = 0.
|
||||
for index, row in data.iterrows():
|
||||
time = row['time']
|
||||
sunlight_intensity = row['sunlight']
|
||||
self.time.append(time)
|
||||
# sunlight_intensity = row['sunlight']
|
||||
pv_yield = row['PV yield[kW/kWp]']
|
||||
factory_demand = row['demand']
|
||||
electricity_price = row['buy']
|
||||
sell_price = row['sell']
|
||||
@@ -55,8 +65,13 @@ class EnergySystem:
|
||||
soc = self.ess.storage / self.ess.capacity
|
||||
self.hour_stored_2.append(soc)
|
||||
|
||||
generated_pv_power = self.pv.capacity * sunlight_intensity # 生成的功率,单位 kW
|
||||
generated_pv_power = self.pv.capacity * pv_yield# 生成的功率,单位 kW
|
||||
generated_pv_energy = generated_pv_power * time_interval * self.pv.loss # 生成的能量,单位 kWh
|
||||
self.pv_generated_kWh.append(generated_pv_energy)
|
||||
self.factory_demand.append(factory_demand)
|
||||
self.buy_price_kWh.append(electricity_price)
|
||||
self.sell_price_kWh.append(sell_price)
|
||||
|
||||
self.generated += generated_pv_energy
|
||||
# pv生成的能量如果比工厂的需求要大
|
||||
if generated_pv_energy >= factory_demand * time_interval:
|
||||
@@ -74,6 +89,7 @@ class EnergySystem:
|
||||
# 节省的能量 = 工厂需求的能量 * 时间段
|
||||
# total_energy = factory_demand * time_interval
|
||||
saved_energy = factory_demand * time_interval
|
||||
self.grid_need_power_kW.append(0)
|
||||
# pv比工厂的需求小
|
||||
else:
|
||||
# 从ess中需要的电量 = 工厂需要的电量 - pv中的电量
|
||||
@@ -89,6 +105,7 @@ class EnergySystem:
|
||||
self.ess.storage -= discharging_power
|
||||
# 节省下来的能量 = pv的能量 + 放出来的能量
|
||||
saved_energy = generated_pv_energy + discharging_power * self.ess.loss
|
||||
self.grid_need_power_kW.append(0)
|
||||
else:
|
||||
# 如果存的电量不够
|
||||
# 需要把ess中的所有电量释放出来
|
||||
@@ -105,6 +122,7 @@ class EnergySystem:
|
||||
self.ess.storage = 0
|
||||
needed_from_grid = factory_demand * time_interval - saved_energy
|
||||
net_grid = min(self.grid.capacity * time_interval, needed_from_grid) * self.grid.loss
|
||||
self.grid_need_power_kW.append(needed_from_grid * 4)
|
||||
# grid_energy += net_grid
|
||||
# total_energy += net_grid
|
||||
# print(total_energy)
|
||||
@@ -123,6 +141,7 @@ class EnergySystem:
|
||||
if index in range(week_start, week_end):
|
||||
self.spring_week_gen.append(generated_pv_power)
|
||||
self.spring_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
self.ess_rest = self.ess.storage
|
||||
# summer
|
||||
# week_start += self.season_step
|
||||
# week_end += self.season_step
|
||||
|
45235
combined_data.csv
45235
combined_data.csv
File diff suppressed because it is too large
Load Diff
10
config.json
10
config.json
@@ -17,12 +17,12 @@
|
||||
"pv_capacities":{
|
||||
"begin": 0,
|
||||
"end": 50000,
|
||||
"groups": 11
|
||||
"groups": 3
|
||||
},
|
||||
"ess_capacities":{
|
||||
"begin": 0,
|
||||
"end": 100000,
|
||||
"groups": 11
|
||||
"groups": 3
|
||||
},
|
||||
"time_interval":{
|
||||
"numerator": 15,
|
||||
@@ -43,5 +43,11 @@
|
||||
"cost": "Costs of Microgrid system [m-EUR]",
|
||||
"benefit": "Financial Profit Based on Py & Ess Configuration (k-EUR / year)",
|
||||
"roi": "ROI"
|
||||
},
|
||||
"data_path": {
|
||||
"pv_yield": "read_data/Serbia.csv",
|
||||
"demand": "read_data/factory_power1.csv",
|
||||
"sell": "read_data/electricity_price_data_sell.csv",
|
||||
"buy": "read_data/electricity_price_data.csv"
|
||||
}
|
||||
}
|
@@ -10,12 +10,12 @@ class pv_config:
|
||||
def get_cost_per_year(self):
|
||||
return self.capacity * self.cost_per_kW / self.lifetime
|
||||
class ess_config:
|
||||
def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power):
|
||||
def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power, storage=0):
|
||||
self.capacity = capacity
|
||||
self.cost_per_kW = cost_per_kW
|
||||
self.lifetime = lifetime
|
||||
self.loss = loss
|
||||
self.storage = 0
|
||||
self.storage = storage
|
||||
self.charge_power = charge_power
|
||||
self.discharge_power = discharge_power
|
||||
def get_cost(self):
|
||||
|
351
main.ipynb
351
main.ipynb
File diff suppressed because one or more lines are too long
165
main.py
165
main.py
@@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[ ]:
|
||||
# In[83]:
|
||||
|
||||
|
||||
import os
|
||||
@@ -28,7 +28,7 @@ folder_path = 'plots'
|
||||
clear_folder_make_ess_pv(folder_path)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[84]:
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
@@ -39,7 +39,7 @@ from EnergySystem import EnergySystem
|
||||
from config import pv_config, grid_config, ess_config
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[85]:
|
||||
|
||||
|
||||
import json
|
||||
@@ -53,7 +53,7 @@ with open('config.json', 'r') as f:
|
||||
|
||||
|
||||
time_interval = js_data["time_interval"]["numerator"] / js_data["time_interval"]["denominator"]
|
||||
print(time_interval)
|
||||
# print(time_interval)
|
||||
|
||||
pv_loss = js_data["pv"]["loss"]
|
||||
pv_cost_per_kW = js_data["pv"]["cost_per_kW"]
|
||||
@@ -116,7 +116,7 @@ ess_capacities = np.linspace(ess_begin, ess_end, ess_groups)
|
||||
# overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[86]:
|
||||
|
||||
|
||||
hour_demand = []
|
||||
@@ -132,7 +132,7 @@ plt.savefig('plots/demand.png')
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[87]:
|
||||
|
||||
|
||||
def draw_results(results, filename, title_benefit, annot_benefit=False, figure_size=(10, 10)):
|
||||
@@ -171,7 +171,7 @@ def draw_results(results, filename, title_benefit, annot_benefit=False, figure_s
|
||||
plt.savefig(filename)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[88]:
|
||||
|
||||
|
||||
def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, figure_size=(10, 10)):
|
||||
@@ -184,7 +184,7 @@ def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, fig
|
||||
if 0 in df.index and 0 in df.columns:
|
||||
df.loc[0,0] = 100
|
||||
df[df > 80] = 100
|
||||
print(df)
|
||||
# print(df)
|
||||
|
||||
df = df.astype(float)
|
||||
df.index = df.index / 1000
|
||||
@@ -193,7 +193,7 @@ def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, fig
|
||||
df.columns = df.columns.map(int)
|
||||
min_value = df.min().min()
|
||||
max_value = df.max().max()
|
||||
print(max_value)
|
||||
# print(max_value)
|
||||
max_scale = max(abs(min_value), abs(max_value))
|
||||
|
||||
df[df.columns[-1] + 1] = df.iloc[:, -1]
|
||||
@@ -219,9 +219,10 @@ def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, fig
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[89]:
|
||||
|
||||
|
||||
def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)):
|
||||
@@ -253,19 +254,20 @@ def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[90]:
|
||||
|
||||
|
||||
def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10), days=365, granularity=15):
|
||||
df = overload_cnt
|
||||
print(days, granularity)
|
||||
# print(days, granularity)
|
||||
coef = 60 / granularity * days * 24
|
||||
print(coef)
|
||||
print(df)
|
||||
# print(coef)
|
||||
# print(df)
|
||||
df = ( coef - df) / coef
|
||||
print(df)
|
||||
# print(df)
|
||||
|
||||
df = df.astype(float)
|
||||
df.index = df.index / 1000
|
||||
@@ -304,9 +306,10 @@ def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[91]:
|
||||
|
||||
|
||||
def cal_profit(es: EnergySystem, saved_money, days):
|
||||
@@ -314,10 +317,10 @@ def cal_profit(es: EnergySystem, saved_money, days):
|
||||
return profit
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[92]:
|
||||
|
||||
|
||||
def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days):
|
||||
def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days, storage=0):
|
||||
pv = pv_config(capacity=pv_capacity,
|
||||
cost_per_kW=pv_cost_per_kW,
|
||||
lifetime=pv_lifetime,
|
||||
@@ -327,7 +330,8 @@ def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacit
|
||||
lifetime=ess_lifetime,
|
||||
loss=ess_loss,
|
||||
charge_power=ess_capacity,
|
||||
discharge_power=ess_capacity)
|
||||
discharge_power=ess_capacity,
|
||||
storage=storage)
|
||||
grid = grid_config(capacity=grid_capacity,
|
||||
grid_loss=grid_loss,
|
||||
sell_price= sell_price)
|
||||
@@ -338,34 +342,96 @@ def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacit
|
||||
results = cal_profit(energySystem, benefit, days)
|
||||
overload_cnt = energySystem.overload_cnt
|
||||
costs = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW
|
||||
return (results, overload_cnt, costs, netto_benefit, gen_energy, energySystem.generated)
|
||||
return (results,
|
||||
overload_cnt,
|
||||
costs,
|
||||
netto_benefit,
|
||||
gen_energy,
|
||||
energySystem.generated,
|
||||
energySystem.ess_rest,
|
||||
energySystem.factory_demand,
|
||||
energySystem.buy_price_kWh,
|
||||
energySystem.sell_price_kWh,
|
||||
energySystem.pv_generated_kWh,
|
||||
energySystem.grid_need_power_kW,
|
||||
energySystem.time)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
# In[93]:
|
||||
|
||||
|
||||
from tqdm import tqdm
|
||||
months_results = []
|
||||
months_costs = []
|
||||
months_overload = []
|
||||
months_nettos = []
|
||||
months_gen_energy = []
|
||||
months_gen_energy2 = []
|
||||
for index, month_data in enumerate(months_data):
|
||||
months_ess_rest = pd.DataFrame(30, index=pv_capacities, columns= ess_capacities)
|
||||
months_csv_data = {}
|
||||
for index, month_data in tqdm(enumerate(months_data), total=len(months_data), position=0, leave= True):
|
||||
results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
gen_energies = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
gen_energies2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
for pv_capacity in pv_capacities:
|
||||
factory_demands = {}
|
||||
buy_prices= {}
|
||||
sell_prices = {}
|
||||
pv_generates = {}
|
||||
grid_need_powers = {}
|
||||
times = {}
|
||||
for pv_capacity in tqdm(pv_capacities, total=len(pv_capacities), desc=f'generating pv for month {index + 1}',position=1, leave=False):
|
||||
factory_demands[pv_capacity] = {}
|
||||
buy_prices[pv_capacity] = {}
|
||||
sell_prices[pv_capacity] = {}
|
||||
pv_generates[pv_capacity] = {}
|
||||
grid_need_powers[pv_capacity] = {}
|
||||
times[pv_capacity] = {}
|
||||
for ess_capacity in ess_capacities:
|
||||
(result, overload, cost, netto, gen_energy, gen_energy2) = generate_data(pv_capacity=pv_capacity,pv_cost_per_kW=pv_cost_per_kW, pv_lifetime=pv_lifetime, pv_loss=pv_loss, ess_capacity=ess_capacity, ess_cost_per_kW=ess_cost_per_kW, ess_lifetime=ess_lifetime, ess_loss=ess_loss, grid_capacity=grid_capacity, grid_loss=grid_loss, sell_price=sell_price, time_interval=time_interval, data=month_data, days=months_days[index])
|
||||
(result,
|
||||
overload,
|
||||
cost,
|
||||
netto,
|
||||
gen_energy,
|
||||
gen_energy2,
|
||||
ess_rest,
|
||||
factory_demand,
|
||||
buy_price,
|
||||
sell_price,
|
||||
pv_generate,
|
||||
grid_need_power,
|
||||
time) = generate_data(pv_capacity=pv_capacity,
|
||||
pv_cost_per_kW=pv_cost_per_kW,
|
||||
pv_lifetime=pv_lifetime,
|
||||
pv_loss=pv_loss,
|
||||
ess_capacity=ess_capacity,
|
||||
ess_cost_per_kW=ess_cost_per_kW,
|
||||
ess_lifetime=ess_lifetime,
|
||||
ess_loss=ess_loss,
|
||||
grid_capacity=grid_capacity,
|
||||
grid_loss=grid_loss,
|
||||
sell_price=sell_price,
|
||||
time_interval=time_interval,
|
||||
data=month_data,
|
||||
days=months_days[index],
|
||||
storage=months_ess_rest.loc[pv_capacity, ess_capacity])
|
||||
results.loc[pv_capacity,ess_capacity] = result
|
||||
overload_cnt.loc[pv_capacity,ess_capacity] = overload
|
||||
costs.loc[pv_capacity,ess_capacity] = cost
|
||||
nettos.loc[pv_capacity,ess_capacity] = netto
|
||||
gen_energies.loc[pv_capacity, ess_capacity] = gen_energy
|
||||
gen_energies2.loc[pv_capacity, ess_capacity] = gen_energy2
|
||||
months_ess_rest.loc[pv_capacity, ess_capacity] = ess_rest
|
||||
factory_demands[pv_capacity][ess_capacity] = factory_demand
|
||||
buy_prices[pv_capacity][ess_capacity] = buy_price
|
||||
sell_prices[pv_capacity][ess_capacity] = sell_price
|
||||
pv_generates[pv_capacity][ess_capacity] = pv_generate
|
||||
grid_need_powers[pv_capacity][ess_capacity] = grid_need_power
|
||||
times[pv_capacity][ess_capacity] = time
|
||||
months_csv_data[index] = {"factory_demand": factory_demands, "buy_price": buy_prices, "sell_price": sell_prices, "pv_generate": pv_generates, "grid_need_power": grid_need_powers, "time": times}
|
||||
months_results.append(results)
|
||||
months_costs.append(costs)
|
||||
months_overload.append(overload_cnt)
|
||||
@@ -384,7 +450,6 @@ for index, month_data in enumerate(months_data):
|
||||
figure_size=figure_size,
|
||||
days=months_days[index],
|
||||
granularity=granularity)
|
||||
|
||||
annual_result = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_overload = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
@@ -393,7 +458,6 @@ annual_gen = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_gen2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
|
||||
|
||||
|
||||
# get the yearly results
|
||||
for pv_capacity in pv_capacities:
|
||||
for ess_capacity in ess_capacities:
|
||||
@@ -434,7 +498,48 @@ draw_overload(overload_cnt=annual_overload,
|
||||
figure_size=figure_size)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[94]:
|
||||
|
||||
|
||||
def collapse_months_csv_data(months_csv_data, column_name,pv_capacies, ess_capacities):
|
||||
data = {}
|
||||
for pv_capacity in pv_capacities:
|
||||
data[pv_capacity] = {}
|
||||
for ess_capacity in ess_capacities:
|
||||
annual_data = []
|
||||
for index, month_data in enumerate(months_data):
|
||||
annual_data.extend(months_csv_data[index][column_name][pv_capacity][ess_capacity])
|
||||
# months_csv_data[index][column_name][pv_capacity][ess_capacity] = months_csv_data[index][column_name][pv_capacity][ess_capacity].tolist()
|
||||
|
||||
data[pv_capacity][ess_capacity] = annual_data
|
||||
return data
|
||||
|
||||
|
||||
# In[102]:
|
||||
|
||||
|
||||
annual_pv_gen = collapse_months_csv_data(months_csv_data, "pv_generate", pv_capacities, ess_capacities)
|
||||
annual_time = collapse_months_csv_data(months_csv_data, "time", pv_capacities, ess_capacities)
|
||||
annual_buy_price = collapse_months_csv_data(months_csv_data, "buy_price",pv_capacities, ess_capacities)
|
||||
annual_sell_price = collapse_months_csv_data(months_csv_data, "sell_price", pv_capacities, ess_capacities)
|
||||
annual_factory_demand = collapse_months_csv_data(months_csv_data, "factory_demand", pv_capacities, ess_capacities)
|
||||
annual_grid_need_power = collapse_months_csv_data(months_csv_data, "grid_need_power", pv_capacities, ess_capacities)
|
||||
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
for pv_capacity in pv_capacities:
|
||||
for ess_capacity in ess_capacities:
|
||||
with open(f'data/annual_data-pv-{pv_capacity}-ess-{ess_capacity}.csv', 'w') as f:
|
||||
f.write("date, time,pv_generate (kW),factory_demand (kW),buy_price (USD/MWh),sell_price (USD/MWh),grid_need_power (kW)\n")
|
||||
start_date = datetime(2023, 1, 1, 0, 0, 0)
|
||||
for i in range(len(annual_time[pv_capacity][ess_capacity])):
|
||||
current_date = start_date + timedelta(hours=i)
|
||||
formate_date = current_date.strftime("%Y-%m-%d")
|
||||
f.write(f"{formate_date},{annual_time[pv_capacity][ess_capacity][i]},{int(annual_pv_gen[pv_capacity][ess_capacity][i])},{int(annual_factory_demand[pv_capacity][ess_capacity][i])},{int(annual_buy_price[pv_capacity][ess_capacity][i]*1000)},{int(annual_sell_price[pv_capacity][ess_capacity][i]*1000)},{int(annual_grid_need_power[pv_capacity][ess_capacity][i])} \n")
|
||||
|
||||
|
||||
|
||||
# In[96]:
|
||||
|
||||
|
||||
def save_data(data, filename):
|
||||
@@ -442,7 +547,7 @@ def save_data(data, filename):
|
||||
data.to_json(filename + '.json')
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[97]:
|
||||
|
||||
|
||||
if not os.path.isdir('data'):
|
||||
@@ -453,13 +558,13 @@ save_data(annual_costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_
|
||||
save_data(annual_overload, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[98]:
|
||||
|
||||
|
||||
draw_results(annual_result, 'plots/test.png', 'test', False)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[99]:
|
||||
|
||||
|
||||
draw_roi(annual_costs, annual_nettos, 'plots/annual_roi.png', title_roi, 365, annot_benefit, figure_size)
|
||||
|
48
read_data.py
48
read_data.py
@@ -1,57 +1,47 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import csv
|
||||
import json
|
||||
|
||||
sunlight_file_name = 'lightintensity.xlsx'
|
||||
factory_demand_file_name = 'factory_power1.xlsx'
|
||||
electricity_price_data = 'electricity_price_data.csv'
|
||||
electricity_price_data_sell = 'electricity_price_data_sell.csv'
|
||||
with open('config.json', 'r') as f:
|
||||
js_data = json.load(f)
|
||||
|
||||
df_sunlight = pd.read_excel(sunlight_file_name, header=None, names=['SunlightIntensity'])
|
||||
pv_yield_file_name = js_data["data_path"]["pv_yield"]
|
||||
print(pv_yield_file_name)
|
||||
# factory_demand_file_name = 'factory_power1.xlsx'
|
||||
factory_demand_file_name = js_data["data_path"]["demand"]
|
||||
print(factory_demand_file_name)
|
||||
electricity_price_data = js_data["data_path"]["buy"]
|
||||
print(electricity_price_data)
|
||||
electricity_price_data_sell = js_data["data_path"]["sell"]
|
||||
print(electricity_price_data_sell)
|
||||
|
||||
start_date = '2023-01-01 00:00:00' # 根据数据的实际开始日期调整
|
||||
hours = pd.date_range(start=start_date, periods=len(df_sunlight), freq='h')
|
||||
df_sunlight['Time'] = hours
|
||||
df_sunlight.set_index('Time', inplace=True)
|
||||
pv_df = pd.read_csv(pv_yield_file_name, index_col='Time', usecols=['Time', 'PV yield[kW/kWp]'])
|
||||
pv_df.index = pd.to_datetime(pv_df.index)
|
||||
|
||||
df_sunlight_resampled = df_sunlight.resample('15min').interpolate()
|
||||
|
||||
df_power = pd.read_excel(factory_demand_file_name,
|
||||
header=None,
|
||||
names=['FactoryPower'],
|
||||
dtype={'FactoryPower': float})
|
||||
times = pd.date_range(start=start_date, periods=len(df_power), freq='15min')
|
||||
df_power['Time'] = times
|
||||
df_power.set_index('Time',inplace=True)
|
||||
print(df_power.head())
|
||||
|
||||
df_combined = df_sunlight_resampled.join(df_power)
|
||||
|
||||
|
||||
df_power = pd.read_csv(factory_demand_file_name, index_col='Time', usecols=['Time', 'FactoryPower'])
|
||||
df_power.index = pd.to_datetime(df_power.index)
|
||||
df_combined = pv_df.join(df_power)
|
||||
|
||||
price_df = pd.read_csv(electricity_price_data, index_col='Time', usecols=['Time', 'ElectricityBuy'])
|
||||
price_df.index = pd.to_datetime(price_df.index)
|
||||
price_df = price_df.reindex(df_combined.index)
|
||||
|
||||
print("Electricity price data generated and saved.")
|
||||
df_combined2 = df_combined.join(price_df)
|
||||
|
||||
sell_df = pd.read_csv(electricity_price_data_sell, index_col='Time', usecols=['Time', 'ElectricitySell'])
|
||||
sell_df.index = pd.to_datetime(sell_df.index)
|
||||
sell_df = sell_df.reindex(df_combined.index)
|
||||
|
||||
df_combined3 = df_combined2.join(sell_df)
|
||||
|
||||
with open('combined_data.csv', 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(['time', 'sunlight', 'demand','buy', 'sell'])
|
||||
writer.writerow(['time', 'PV yield[kW/kWp]', 'demand','buy', 'sell'])
|
||||
cnt = 0
|
||||
for index, row in df_combined3.iterrows():
|
||||
time_formatted = index.strftime('%H:%M')
|
||||
writer.writerow([time_formatted, row['SunlightIntensity'], row['FactoryPower'],row['ElectricityBuy'], row['ElectricitySell']])
|
||||
writer.writerow([time_formatted, row['PV yield[kW/kWp]'], row['FactoryPower'],row['ElectricityBuy'], row['ElectricitySell']])
|
||||
|
||||
print('The file is written to combined_data.csv')
|
||||
|
||||
# combined_data.to_csv('updated_simulation_with_prices.csv', index=False)
|
||||
|
||||
print("Simulation data with electricity prices has been updated and saved.")
|
35041
read_data/Berlin.csv
Normal file
35041
read_data/Berlin.csv
Normal file
File diff suppressed because it is too large
Load Diff
35041
read_data/Cambodge.csv
Normal file
35041
read_data/Cambodge.csv
Normal file
File diff suppressed because it is too large
Load Diff
35041
read_data/Marcedonia.csv
Normal file
35041
read_data/Marcedonia.csv
Normal file
File diff suppressed because it is too large
Load Diff
35041
read_data/Riyahd.csv
Normal file
35041
read_data/Riyahd.csv
Normal file
File diff suppressed because it is too large
Load Diff
35041
read_data/Serbia.csv
Normal file
35041
read_data/Serbia.csv
Normal file
File diff suppressed because it is too large
Load Diff
79
read_data/convert_data.py
Normal file
79
read_data/convert_data.py
Normal file
@@ -0,0 +1,79 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import os
|
||||
import csv
|
||||
|
||||
def generate_min_df(mins = 15):
|
||||
end = 60/mins * 24
|
||||
start_date = '2023-01-01'
|
||||
end_date = '2023-12-31'
|
||||
|
||||
all_dates = pd.date_range(start=start_date, end=end_date, freq='D')
|
||||
all_times = pd.timedelta_range(start='0 min', end=f'1435 min', freq=f'{mins} min')
|
||||
|
||||
date_times = [pd.Timestamp(date) + time for date in all_dates for time in all_times]
|
||||
|
||||
time_frame = pd.DataFrame({
|
||||
'Time': date_times
|
||||
})
|
||||
return time_frame
|
||||
|
||||
def save_csv(df, filename, columns):
|
||||
with open(filename, 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(['Time', 'PV yield[kW/kWp]'])
|
||||
for index, row in df.iterrows():
|
||||
time_formatted = index.strftime('%H:%M')
|
||||
writer.writerow([time_formatted, row[columns[1]]])
|
||||
|
||||
print(f'The file is written to {filename}')
|
||||
|
||||
def read_csv(filename):
|
||||
skip_rows = list(range(1, 17))
|
||||
data = pd.read_csv(filename, sep=';', skiprows=skip_rows)
|
||||
return data
|
||||
|
||||
def process(file_name):
|
||||
df = read_csv(file_name)
|
||||
city = file_name.split('_')[0]
|
||||
|
||||
remain_column = ['Time','PV energy (AC) minus standby use ']
|
||||
energy_row_name = remain_column[1]
|
||||
|
||||
df = df[remain_column]
|
||||
df[energy_row_name] = df[energy_row_name].str.replace(',','.').astype(float)
|
||||
|
||||
sum_energy = df[energy_row_name].sum()
|
||||
group_size = 15
|
||||
df['group_id'] = df.index // group_size
|
||||
|
||||
sums = df.groupby('group_id')[energy_row_name].sum()
|
||||
sums_df = sums.reset_index(drop=True).to_frame(name = 'Energy')
|
||||
|
||||
pv_energy_column_name = 'PV yield[kW/kWp]'
|
||||
sums_df = sums_df.rename(columns={'Energy': pv_energy_column_name})
|
||||
|
||||
time_frame = generate_min_df(15)
|
||||
sums_df = pd.concat([time_frame, sums_df], axis=1)
|
||||
# sums_df.set_index('Time', inplace=True)
|
||||
# max_value = sums_df[pv_energy_column_name].max()
|
||||
sums_df[pv_energy_column_name] = sums_df[pv_energy_column_name] / 390.
|
||||
sums_df[pv_energy_column_name] = sums_df[pv_energy_column_name].round(4)
|
||||
sums_df[pv_energy_column_name].replace(0.0, -0.0)
|
||||
|
||||
sums_df.to_csv(f'{city}.csv')
|
||||
# save_csv(sums_df, f'{city}.csv', ['Time', 'Energy'])
|
||||
|
||||
if __name__ == '__main__':
|
||||
city_list = ['Riyahd', 'Cambodge', 'Berlin', 'Serbia']
|
||||
for city in city_list:
|
||||
print(f'Processing {city}')
|
||||
file_name = f'{city}_raw.csv'
|
||||
process(file_name)
|
||||
print(f'Processing {city} is done\n')
|
||||
|
Can't render this file because it is too large.
|
Can't render this file because it is too large.
|
35041
read_data/factory_power1.csv
Normal file
35041
read_data/factory_power1.csv
Normal file
File diff suppressed because it is too large
Load Diff
16
xlsx2csv.py
Normal file
16
xlsx2csv.py
Normal file
@@ -0,0 +1,16 @@
|
||||
import pandas as pd
|
||||
|
||||
excel_file = 'factory_power1.xlsx'
|
||||
sheet_name = 'Sheet1'
|
||||
|
||||
df = pd.read_excel(excel_file, sheet_name=sheet_name)
|
||||
|
||||
start_date = '2023-01-01'
|
||||
df_power = pd.read_excel(excel_file,
|
||||
header=None,
|
||||
names=['FactoryPower'],
|
||||
dtype={'FactoryPower': float})
|
||||
times = pd.date_range(start=start_date, periods=len(df_power), freq='15min')
|
||||
df_power['Time'] = times
|
||||
df_power = df_power[['Time', 'FactoryPower']]
|
||||
df_power.to_csv('factory_power1.csv', index=True)
|
Reference in New Issue
Block a user