Compare commits
	
		
			10 Commits
		
	
	
		
			ca10254c52
			...
			651833b521
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 651833b521 | |||
| 3bc2478cd9 | |||
| b79ffb2416 | |||
| c0a7b5beff | |||
| ed58e34e7e | |||
| 88240280ca | |||
| 09ef44fc21 | |||
| f7afee2a64 | |||
| 90c96a512a | |||
| 3cc208035a | 
							
								
								
									
										62
									
								
								EnergySystem.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										62
									
								
								EnergySystem.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,62 @@ | ||||
| from config import pv_config, ess_config, grid_config | ||||
| import pandas as pd | ||||
| class EnergySystem: | ||||
|     def __init__(self, pv_type: pv_config, ess_type: ess_config, grid_type: grid_config): | ||||
|         self.pv = pv_type | ||||
|         self.ess = ess_type | ||||
|         self.grid = grid_type | ||||
|  | ||||
|     # 优先使用PV供电给工厂 - 如果PV输出能满足工厂的需求,则直接供电,多余的电能用来给ESS充电。 | ||||
|     # PV不足时使用ESS补充 - 如果PV输出不足以满足工厂需求,首先从ESS获取所需电量。 | ||||
|     # 如果ESS也不足以满足需求,再从电网获取 - 当ESS中的存储电量也不足以补充时,再从电网购买剩余所需电量。 | ||||
|     def simulate(self, data, time_interval): | ||||
|         total_benefit = 0 | ||||
|         for index, row in data.iterrows(): | ||||
|             time = row['time'] | ||||
|             sunlight_intensity = row['sunlight'] | ||||
|             factory_demand = row['demand'] | ||||
|             # electricity_price = self.grid.get_price_for_time(time) | ||||
|             electricity_price = row['price'] | ||||
|  | ||||
|             generated_pv_power = self.pv.capacity * sunlight_intensity  # 生成的功率,单位 kW | ||||
|             generated_pv_energy = generated_pv_power * time_interval * self.pv.loss  # 生成的能量,单位 kWh | ||||
|             # pv生成的能量如果比工厂的需求要大 | ||||
|             if generated_pv_energy >= factory_demand * time_interval: | ||||
|                 # 剩余的能量(kwh) = pv生成的能量 - 工厂需求的功率 * 时间间隔  | ||||
|                 surplus_energy = generated_pv_energy - factory_demand * time_interval | ||||
|                 # 要充到ess中的能量 = min(剩余的能量,ess的充电功率*时间间隔(ess在时间间隔内能充进的电量),ess的容量-ess储存的能量(ess中能冲进去的电量)) | ||||
|                 charge_to_ess = min(surplus_energy, self.ess.charge_power * time_interval, self.ess.capacity - self.ess.storage) | ||||
|                 self.ess.storage += charge_to_ess | ||||
|                 surplus_after_ess = surplus_energy - charge_to_ess | ||||
|                 # 如果还有电量盈余,且pv功率大于ess的充电功率+工厂的需求功率则准备卖电 | ||||
|                 if surplus_after_ess > 0 and generated_pv_power > self.ess.charge_power + factory_demand: | ||||
|                     sold_to_grid = surplus_after_ess | ||||
|                     sell_income = sold_to_grid * self.grid.sell_price | ||||
|                     total_benefit += sell_income | ||||
|                 # 节省的能量 = 工厂需求的能量 * 时间段 | ||||
|                 total_energy = factory_demand * time_interval | ||||
|             # pv比工厂的需求小 | ||||
|             else: | ||||
|                 # 从ess中需要的电量 = 工厂需要的电量 - pv中的电量 | ||||
|                 needed_from_ess = factory_demand * time_interval - generated_pv_energy | ||||
|                 # 如果ess中村的电量比需要的多 | ||||
|                 if self.ess.storage >= needed_from_ess: | ||||
|                     # 取出电量 | ||||
|                     discharging_power = min(self.ess.discharge_power * time_interval, needed_from_ess) | ||||
|                     self.ess.storage -= discharging_power | ||||
|                     # 生下来的能量 = pv的能量 + 放出来的能量 | ||||
|                     total_energy = generated_pv_energy + discharging_power | ||||
|                 else: | ||||
|                     total_energy = generated_pv_energy + self.ess.storage | ||||
|                     self.ess.storage = 0 | ||||
|                     needed_from_grid = factory_demand * time_interval - total_energy | ||||
|                     net_grid = min(self.grid.capacity * time_interval, needed_from_grid) *  self.grid.loss | ||||
|                     # total_energy += net_grid | ||||
|             # print(total_energy) | ||||
|             # 工厂需求量-总能量 | ||||
|             # unmet_demand = max(0, factory_demand * time_interval - total_energy) | ||||
|             # benefit = (total_energy - unmet_demand) * electricity_price | ||||
|             benefit = (total_energy) * electricity_price | ||||
|             total_benefit += benefit | ||||
|  | ||||
|         return total_benefit | ||||
							
								
								
									
										
											BIN
										
									
								
								PV&PowerConsumptionData.xlsx
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								PV&PowerConsumptionData.xlsx
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										35038
									
								
								combined_data.csv
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										35038
									
								
								combined_data.csv
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										21
									
								
								config.py
									
									
									
									
									
								
							
							
						
						
									
										21
									
								
								config.py
									
									
									
									
									
								
							| @@ -1,23 +1,26 @@ | ||||
| import pandas as pd | ||||
| class pv_config: | ||||
|     def __init__(self, capacity, cost_per_kW, pv_lifetime, pv_loss): | ||||
|     def __init__(self, capacity, cost_per_kW, lifetime, loss): | ||||
|         self.capacity = capacity | ||||
|         self.cost_per_kW = cost_per_kW | ||||
|         self.pv_lifetime = pv_lifetime | ||||
|         self.pv_loss = pv_loss | ||||
|         self.lifetime = lifetime | ||||
|         self.loss = loss | ||||
| class ess_config: | ||||
|     def __init__(self, capacity, cost_per_kW, ess_lifetime, ess_loss, charge_power, discharge_power): | ||||
|     def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power): | ||||
|         self.capacity = capacity | ||||
|         self.cost_per_kW = cost_per_kW | ||||
|         self.ess_lifetime = ess_lifetime | ||||
|         self.ess_loss = ess_loss | ||||
|         self.ess_storage = 0 | ||||
|         self.lifetime = lifetime | ||||
|         self.loss = loss | ||||
|         self.storage = 0 | ||||
|         self.charge_power = charge_power | ||||
|         self.discharge_power = discharge_power | ||||
|  | ||||
| class grid_config: | ||||
|     def __init__(self, price_schedule, grid_loss): | ||||
|         self.price_schedule = price_schedule | ||||
|     def __init__(self, capacity, grid_loss, sell_price): | ||||
|         # self.price_schedule = price_schedule | ||||
|         self.loss = grid_loss | ||||
|         self.sell_price = sell_price | ||||
|         self.capacity = capacity | ||||
|      | ||||
|     def get_price_for_time(self, time): | ||||
|         hour, minute = map(int, time.split(':')) | ||||
|   | ||||
							
								
								
									
										35041
									
								
								electricity_price_data.csv
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										35041
									
								
								electricity_price_data.csv
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								factory_power.xlsx
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								factory_power.xlsx
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										56
									
								
								generatedata.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										56
									
								
								generatedata.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,56 @@ | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
|  | ||||
| # 设置随机种子以重现结果 | ||||
| np.random.seed(43) | ||||
|  | ||||
| def simulate_sunlight(hour, month): | ||||
|     # 假设最大日照强度在正午,根据月份调整最大日照强度 | ||||
|     max_intensity = 1.0  # 夏季最大日照强度 | ||||
|     if month in [12, 1, 2]:  # 冬季 | ||||
|         max_intensity = 0.6 | ||||
|     elif month in [3, 4, 10, 11]:  # 春秋 | ||||
|         max_intensity = 0.8 | ||||
|      | ||||
|     # 计算日照强度,模拟早晚日照弱,中午日照强 | ||||
|     intensity = max_intensity * np.sin(np.pi * (hour - 6) / 12)**2 if 6 <= hour <= 18 else 0 | ||||
|     return intensity | ||||
|  | ||||
| def simulate_factory_demand(hour, day_of_week): | ||||
|     # 周末工厂需求可能减少 | ||||
|     if day_of_week in [5, 6]:  # 周六和周日 | ||||
|         base_demand = 3000 | ||||
|     else: | ||||
|         base_demand = 6000 | ||||
|      | ||||
|     # 日常波动 | ||||
|     if 8 <= hour <= 20: | ||||
|         return base_demand + np.random.randint(100, 200)  # 白天需求量大 | ||||
|     else: | ||||
|         return base_demand - np.random.randint(0, 100)  # 夜间需求量小 | ||||
|  | ||||
| def generate_data(days=10): | ||||
|     records = [] | ||||
|     month_demand = 0 | ||||
|     for day in range(days): | ||||
|         month = (day % 365) // 30 + 1 | ||||
|         day_of_week = day % 7 | ||||
|         day_demand = 0 | ||||
|         for hour in range(24): | ||||
|             for minute in [0, 10, 20, 30, 40, 50]: | ||||
|                 time = f'{hour:02d}:{minute:02d}' | ||||
|                 sunlight = simulate_sunlight(hour, month) | ||||
|                 demand = simulate_factory_demand(hour, day_of_week) | ||||
|                 day_demand+=demand | ||||
|                 records.append({'time': time, 'sunlight': sunlight, 'demand': demand}) | ||||
|         print(f"day:{day}, day_demand: {day_demand}") | ||||
|         month_demand += day_demand | ||||
|         if day%30 == 0: | ||||
|             print(f"month:{month}, month_demand:{month_demand}") | ||||
|             month_demand = 0 | ||||
|     return pd.DataFrame(records) | ||||
|  | ||||
| # 生成数据 | ||||
| data = generate_data(365)  # 模拟一年的数据 | ||||
| data.to_csv('simulation_data.csv', index=False) | ||||
| print("Data generated and saved to simulation_data.csv.") | ||||
							
								
								
									
										24
									
								
								generatepriceschedule.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								generatepriceschedule.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
|  | ||||
| def generate_price_schedule(): | ||||
|     records = [] | ||||
|     # 假设一天分为三个时段:谷时、平时、峰时 | ||||
|     times = [('00:00', '06:00', 0.25),   | ||||
|              ('06:00', '18:00', 0.3),   | ||||
|              ('18:00', '24:00', 0.35)]   | ||||
|      | ||||
|     # 随机调整每天的电价以增加现实性 | ||||
|     for time_start, time_end, base_price in times: | ||||
|         # 随机浮动5%以内 | ||||
|         fluctuation = np.random.uniform(-0.005, 0.005) | ||||
|         price = round(base_price + fluctuation, 3) | ||||
|         records.append({'time_start': time_start, 'time_end': time_end, 'price': price}) | ||||
|      | ||||
|     return pd.DataFrame(records) | ||||
|  | ||||
| # 生成电价计划 | ||||
| price_schedule = generate_price_schedule() | ||||
| price_schedule.to_csv('price_schedule.csv', index=False) | ||||
| print("Price schedule generated and saved to price_schedule.csv.") | ||||
| print(price_schedule) | ||||
							
								
								
									
										604
									
								
								main.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										604
									
								
								main.ipynb
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										72
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										72
									
								
								main.py
									
									
									
									
									
								
							| @@ -1 +1,71 @@ | ||||
| import matplotlib | ||||
| import matplotlib.pyplot as plt | ||||
| import seaborn as sns | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| from EnergySystem import EnergySystem | ||||
| from config import pv_config, grid_config, ess_config | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     data = pd.read_csv('combined_data.csv') | ||||
|     time_interval = 15 / 60 | ||||
|  | ||||
|     pv_loss = 0.95 | ||||
|     pv_cost_per_kW = 200 | ||||
|     pv_base = 50000 | ||||
|     pv_lifetime = 25 | ||||
|  | ||||
|     ess_loss = 0.95 | ||||
|     ess_cost_per_kW = 300 | ||||
|     ess_base = 50000 | ||||
|     ess_lifetime = 25 | ||||
|  | ||||
|     grid_loss = 0.95 | ||||
|     sell_price = 0.4 #kWh | ||||
|     grid_capacity = 5000 #kWh | ||||
|  | ||||
|  | ||||
|     pv_step=10000 | ||||
|     ess_step=10000 | ||||
|  | ||||
|     pv_capacities = np.linspace(50000, 150000, 11) | ||||
|     ess_capacities = np.linspace(50000, 150000, 11) | ||||
|     results = pd.DataFrame(index=pv_capacities, columns = ess_capacities) | ||||
|     for pv_capacity in pv_capacities: | ||||
|         print(f"pv_capacity:{pv_capacity}") | ||||
|         for ess_capacity in ess_capacities: | ||||
|             print(f"ess_capacity:{ess_capacity}") | ||||
|             pv = pv_config(capacity=pv_capacity,  | ||||
|                            cost_per_kW=pv_cost_per_kW, | ||||
|                            lifetime=pv_lifetime,  | ||||
|                            loss=pv_loss) | ||||
|             ess = ess_config(capacity=ess_capacity,  | ||||
|                              cost_per_kW=ess_cost_per_kW,  | ||||
|                              lifetime=ess_lifetime,  | ||||
|                              loss=ess_loss, | ||||
|                              charge_power=ess_capacity, | ||||
|                              discharge_power=ess_capacity) | ||||
|             grid = grid_config(capacity=grid_capacity,  | ||||
|                                grid_loss=grid_loss, | ||||
|                                sell_price= sell_price) | ||||
|             energySystem = EnergySystem(pv_type=pv,  | ||||
|                                         ess_type=ess,  | ||||
|                                         grid_type= grid) | ||||
|             benefit = energySystem.simulate(data, time_interval) | ||||
|             results.loc[pv_capacity,ess_capacity] = benefit | ||||
|     results = results.astype(float) | ||||
|  | ||||
|     plt.figure(figsize=(10, 8))  # 设置图形大小 | ||||
|     sns.heatmap(results, annot=True, fmt=".1f", cmap='viridis') | ||||
|     plt.title('Benefit Heatmap Based on PV and ESS Capacities') | ||||
|     plt.xlabel('ESS Capacity (kWh)') | ||||
|     plt.ylabel('PV Capacity (kW)') | ||||
|     plt.show() | ||||
|  | ||||
|     # pv = pv_config(capacity=100000,cost_per_kW=200,lifetime=25,loss=0.95) | ||||
|     # ess = ess_config(capacity=100000,cost_per_kW=300,lifetime=25,loss=0.95,charge_power=100000,discharge_power=100000) | ||||
|     # grid = grid_config(price_schedule=price_schedule, capacity=5000, grid_loss=0.95, sell_price=0.4) | ||||
|     # grid = grid_config(capacity=50000, grid_loss=0.95, sell_price=0.4) | ||||
|  | ||||
|  | ||||
|     # print(benefit) | ||||
							
								
								
									
										19
									
								
								old/generate_electricity_price.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								old/generate_electricity_price.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,19 @@ | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
|  | ||||
| start_date = '2023-01-01' | ||||
| end_date = '2024-01-01' | ||||
|  | ||||
| # 创建时间索引 | ||||
| time_index = pd.date_range(start=start_date, end=end_date, freq='15min') | ||||
|  | ||||
| # 生成电价数据,假设电价在0.28到0.32欧元/kWh之间波动 | ||||
| price_data = np.random.uniform(0.28, 0.32, len(time_index)) | ||||
|  | ||||
| # 创建DataFrame | ||||
| price_df = pd.DataFrame(data={'Time': time_index, 'ElectricityPrice': price_data}) | ||||
|  | ||||
| # 保存到CSV文件 | ||||
| price_df.to_csv('electricity_price_data.csv', index=False) | ||||
|  | ||||
| print("Electricity price data generated and saved.") | ||||
							
								
								
									
										56
									
								
								old/generatedata.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										56
									
								
								old/generatedata.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,56 @@ | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
|  | ||||
| # 设置随机种子以重现结果 | ||||
| np.random.seed(43) | ||||
|  | ||||
| def simulate_sunlight(hour, month): | ||||
|     # 假设最大日照强度在正午,根据月份调整最大日照强度 | ||||
|     max_intensity = 1.0  # 夏季最大日照强度 | ||||
|     if month in [12, 1, 2]:  # 冬季 | ||||
|         max_intensity = 0.6 | ||||
|     elif month in [3, 4, 10, 11]:  # 春秋 | ||||
|         max_intensity = 0.8 | ||||
|      | ||||
|     # 计算日照强度,模拟早晚日照弱,中午日照强 | ||||
|     intensity = max_intensity * np.sin(np.pi * (hour - 6) / 12)**2 if 6 <= hour <= 18 else 0 | ||||
|     return intensity | ||||
|  | ||||
| def simulate_factory_demand(hour, day_of_week): | ||||
|     # 周末工厂需求可能减少 | ||||
|     if day_of_week in [5, 6]:  # 周六和周日 | ||||
|         base_demand = 3000 | ||||
|     else: | ||||
|         base_demand = 6000 | ||||
|      | ||||
|     # 日常波动 | ||||
|     if 8 <= hour <= 20: | ||||
|         return base_demand + np.random.randint(100, 200)  # 白天需求量大 | ||||
|     else: | ||||
|         return base_demand - np.random.randint(0, 100)  # 夜间需求量小 | ||||
|  | ||||
| def generate_data(days=10): | ||||
|     records = [] | ||||
|     month_demand = 0 | ||||
|     for day in range(days): | ||||
|         month = (day % 365) // 30 + 1 | ||||
|         day_of_week = day % 7 | ||||
|         day_demand = 0 | ||||
|         for hour in range(24): | ||||
|             for minute in [0, 10, 20, 30, 40, 50]: | ||||
|                 time = f'{hour:02d}:{minute:02d}' | ||||
|                 sunlight = simulate_sunlight(hour, month) | ||||
|                 demand = simulate_factory_demand(hour, day_of_week) | ||||
|                 day_demand+=demand | ||||
|                 records.append({'time': time, 'sunlight': sunlight, 'demand': demand}) | ||||
|         print(f"day:{day}, day_demand: {day_demand}") | ||||
|         month_demand += day_demand | ||||
|         if day%30 == 0: | ||||
|             print(f"month:{month}, month_demand:{month_demand}") | ||||
|             month_demand = 0 | ||||
|     return pd.DataFrame(records) | ||||
|  | ||||
| # 生成数据 | ||||
| data = generate_data(365)  # 模拟一年的数据 | ||||
| data.to_csv('simulation_data.csv', index=False) | ||||
| print("Data generated and saved to simulation_data.csv.") | ||||
							
								
								
									
										24
									
								
								old/generatepriceschedule.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								old/generatepriceschedule.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
|  | ||||
| def generate_price_schedule(): | ||||
|     records = [] | ||||
|     # 假设一天分为三个时段:谷时、平时、峰时 | ||||
|     times = [('00:00', '06:00', 0.25),   | ||||
|              ('06:00', '18:00', 0.3),   | ||||
|              ('18:00', '24:00', 0.35)]   | ||||
|      | ||||
|     # 随机调整每天的电价以增加现实性 | ||||
|     for time_start, time_end, base_price in times: | ||||
|         # 随机浮动5%以内 | ||||
|         fluctuation = np.random.uniform(-0.005, 0.005) | ||||
|         price = round(base_price + fluctuation, 3) | ||||
|         records.append({'time_start': time_start, 'time_end': time_end, 'price': price}) | ||||
|      | ||||
|     return pd.DataFrame(records) | ||||
|  | ||||
| # 生成电价计划 | ||||
| price_schedule = generate_price_schedule() | ||||
| price_schedule.to_csv('price_schedule.csv', index=False) | ||||
| print("Price schedule generated and saved to price_schedule.csv.") | ||||
| print(price_schedule) | ||||
							
								
								
									
										4
									
								
								old/price_schedule.csv
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								old/price_schedule.csv
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,4 @@ | ||||
| time_start,time_end,price | ||||
| 00:00,06:00,0.247 | ||||
| 06:00,18:00,0.3 | ||||
| 18:00,24:00,0.349 | ||||
| 
 | 
							
								
								
									
										52561
									
								
								old/simulation_data.csv
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										52561
									
								
								old/simulation_data.csv
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										52
									
								
								read_data.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										52
									
								
								read_data.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,52 @@ | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
| import csv | ||||
|  | ||||
| df_sunlight = pd.read_excel('lightintensity.xlsx', header=None, names=['SunlightIntensity']) | ||||
|  | ||||
| start_date = '2023-01-01 00:00:00'  # 根据数据的实际开始日期调整 | ||||
| hours = pd.date_range(start=start_date, periods=len(df_sunlight), freq='h') | ||||
| df_sunlight['Time'] = hours | ||||
| df_sunlight.set_index('Time', inplace=True) | ||||
|  | ||||
| df_sunlight_resampled = df_sunlight.resample('15min').interpolate() | ||||
|  | ||||
| df_power = pd.read_excel('factory_power.xlsx',  | ||||
|                          header=None,  | ||||
|                          names=['FactoryPower'],  | ||||
|                          dtype={'FactoryPower': float}) | ||||
| times = pd.date_range(start=start_date, periods=len(df_power), freq='15min') | ||||
| df_power['Time'] = times | ||||
| df_power.set_index('Time',inplace=True) | ||||
| print(df_power.head()) | ||||
|  | ||||
| df_combined = df_sunlight_resampled.join(df_power) | ||||
|  | ||||
| df_combined.to_csv('combined_data.csv', index=True, index_label='Time') | ||||
|  | ||||
| price_data = np.random.uniform(0.3, 0.3, len(times)) | ||||
|  | ||||
| # 创建DataFrame | ||||
| price_df = pd.DataFrame(data={'Time': times, 'ElectricityPrice': price_data}) | ||||
|  | ||||
| price_df.set_index('Time', inplace=True) | ||||
|  | ||||
| # 保存到CSV文件 | ||||
| price_df.to_csv('electricity_price_data.csv', index=True) | ||||
| print(price_df.head()) | ||||
| print("Electricity price data generated and saved.") | ||||
|  | ||||
| df_combined2 = df_combined.join(price_df) | ||||
| print(df_combined2.head()) | ||||
| # 保存结果 | ||||
| with open('combined_data.csv', 'w', newline='') as file: | ||||
|     writer = csv.writer(file) | ||||
|     writer.writerow(['time', 'sunlight', 'demand','price']) | ||||
|     for index, row in df_combined2.iterrows(): | ||||
|         time_formatted = index.strftime('%H:%M') | ||||
|         writer.writerow([time_formatted, row['SunlightIntensity'], row['FactoryPower'],row['ElectricityPrice']]) | ||||
|     print('The file is written to combined_data.csv') | ||||
|  | ||||
| # combined_data.to_csv('updated_simulation_with_prices.csv', index=False) | ||||
|  | ||||
| print("Simulation data with electricity prices has been updated and saved.") | ||||
		Reference in New Issue
	
	Block a user