Compare commits
	
		
			2 Commits
		
	
	
		
			eb24361ea3
			...
			d791ac481a
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | d791ac481a | ||
|  | 4b72bc6fa3 | 
							
								
								
									
										122
									
								
								draw.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										122
									
								
								draw.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,122 @@ | |||||||
|  | import matplotlib.pyplot as plt | ||||||
|  | import matplotlib.ticker as ticker | ||||||
|  | import numpy as np | ||||||
|  | import pandas as pd | ||||||
|  | import os | ||||||
|  | import seaborn as sns | ||||||
|  | import json | ||||||
|  | from matplotlib.colors import LinearSegmentedColormap | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def read_data(file_name: str): | ||||||
|  |     with open(file_name, 'r') as f: | ||||||
|  |         data = json.load(f) | ||||||
|  |     for key, value in data.items(): | ||||||
|  |         for subkey, subvalue in value.items(): | ||||||
|  |             data[key][subkey] = float(subvalue) | ||||||
|  |     df = pd.DataFrame.from_dict(data, orient='index') | ||||||
|  |     df.index = pd.to_numeric(df.index) | ||||||
|  |     df.columns = pd.to_numeric(df.columns) | ||||||
|  |     return df | ||||||
|  |  | ||||||
|  | def draw_results(results, filename, title, annot_benefit=False, figure_size=(10, 10)): | ||||||
|  |     df= results | ||||||
|  |     df = df.astype(float) | ||||||
|  |     df.index = df.index / 1000 | ||||||
|  |     df.columns = df.columns / 1000 | ||||||
|  |     min_value = df.min().min() | ||||||
|  |     max_value = df.max().max() | ||||||
|  |     max_scale = max(abs(min_value/1000), abs(max_value/1000)) | ||||||
|  |     plt.figure(figsize=figure_size) | ||||||
|  |     cmap = sns.color_palette("coolwarm", as_cmap=True) | ||||||
|  |     ax = sns.heatmap(df/1000, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale, annot=annot_benefit) | ||||||
|  |     ax.xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f"{x:.2f}")) | ||||||
|  |     # ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.1f')) | ||||||
|  |     plt.title(title) | ||||||
|  |     plt.gca().invert_yaxis() | ||||||
|  |     plt.xlabel('ESS Capacity (MWh)') | ||||||
|  |     plt.ylabel('PV Capacity (MW)') | ||||||
|  |     plt.savefig(filename) | ||||||
|  |  | ||||||
|  | def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)): | ||||||
|  |     df = costs | ||||||
|  |     df = df.astype(int) | ||||||
|  |     print(df.index) | ||||||
|  |     df.index = df.index / 1000 | ||||||
|  |     print(df.columns) | ||||||
|  |     df.columns = df.columns / 1000 | ||||||
|  |  | ||||||
|  |     plt.figure(figsize=figure_size) | ||||||
|  |     sns.heatmap(df/1000000,  fmt=".1f", cmap='viridis', annot=annot_cost) | ||||||
|  |     plt.title(title_cost) | ||||||
|  |     plt.gca().invert_yaxis() | ||||||
|  |     plt.xlabel('ESS Capacity (MWh)') | ||||||
|  |     plt.ylabel('PV Capacity (MW)') | ||||||
|  |     print(filename) | ||||||
|  |     plt.savefig(filename) | ||||||
|  |  | ||||||
|  | def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10)): | ||||||
|  |     df = overload_cnt | ||||||
|  |     df = df.astype(int) | ||||||
|  |     df.index = df.index / 1000 | ||||||
|  |     df.columns = df.columns / 1000 | ||||||
|  |     min_value = df.min().min() | ||||||
|  |     max_value = df.max().max() | ||||||
|  |     max_scale = max(abs(min_value/1000), abs(max_value/1000)) | ||||||
|  |  | ||||||
|  |     plt.figure(figsize=figure_size) | ||||||
|  |     cmap = LinearSegmentedColormap.from_list("", ["white", "blue"]) | ||||||
|  |     ax = sns.heatmap(df/(4*24*365), fmt=".00%", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet) | ||||||
|  |     cbar = ax.collections[0].colorbar | ||||||
|  |     cbar.set_ticks([0, 0.25, 0.5, 0.75, 1]) | ||||||
|  |     cbar.set_ticklabels(['0%', '25%', '50%', '75%', '100%']) | ||||||
|  |     cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}')) | ||||||
|  |  | ||||||
|  |     plt.title(title_unmet) | ||||||
|  |     plt.gca().invert_yaxis() | ||||||
|  |     plt.xlabel('ESS Capacity (MWh)') | ||||||
|  |     plt.ylabel('PV Capacity (MW)') | ||||||
|  |     plt.savefig(filename) | ||||||
|  |  | ||||||
|  | directory = 'data/' | ||||||
|  |  | ||||||
|  | file_list = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))] | ||||||
|  |  | ||||||
|  |  | ||||||
|  | split_files = [f.split('-') for f in file_list] | ||||||
|  |  | ||||||
|  | for f in split_files: | ||||||
|  |     print(f[-1]) | ||||||
|  | costs_files = [f for f in split_files if f[-1].endswith('costs.json')] | ||||||
|  | print(f'find costs files: {costs_files}') | ||||||
|  | overload_files = [f for f in split_files if f[-1].endswith('overload_cnt.json')] | ||||||
|  | print(f'find overload files: {overload_files}') | ||||||
|  | results_files = [f for f in split_files if f[-1].endswith('results.json')] | ||||||
|  | print(f'find results files: {results_files}') | ||||||
|  |  | ||||||
|  | costs_dfs = [read_data(directory + '-'.join(f)) for f in costs_files] | ||||||
|  | overload_dfs = [read_data(directory + '-'.join(f)) for f in overload_files] | ||||||
|  | results_dfs = [read_data(directory + '-'.join(f)) for f in results_files] | ||||||
|  |  | ||||||
|  | for costs_df, overload_df, results_df in zip(costs_dfs, overload_dfs, results_dfs): | ||||||
|  |     # print(costs_df.index) | ||||||
|  |     # print(pd.to_numeric(costs_df.columns)) | ||||||
|  |     # costs_df.index = pd.to_numeric(costs_df.columns ) | ||||||
|  |     # costs_df.columns = pd.to_numeric(costs_df.index) | ||||||
|  |     print(costs_df) | ||||||
|  |     draw_cost(costs_df, f'plots/costs-{int(costs_df.columns[-1])}.png', f'Costs for PV-{int(costs_df.columns[-1])}MW ESS-{int(costs_df.index[-1])}MWh', annot_cost=True) | ||||||
|  |     # overload_df.index = pd.to_numeric(overload_df.columns, errors='coerce') | ||||||
|  |     # overload_df.columns = pd.to_numeric(overload_df.columns, errors='coerce') | ||||||
|  |     print(overload_df) | ||||||
|  |     # draw_overload(overload_df, f'plots/overload-{overload_df.columns[-1]}', f'Overload for PV-{overload_df.columns[-1]}MW ESS-{overload_df.index[-1]}MWh', annot_unmet=True) | ||||||
|  |     # results_df.index = pd.to_numeric(results_df.columns, errors='coerce') | ||||||
|  |     # results_df.columns = pd.to_numeric(results_df.columns, errors='coerce') | ||||||
|  |     # draw_results(results_df, f'plots/results-{results_df.columns[-1]}', f'Results for PV-{results_df.columns[-1]}MW ESS-{results_df.index[-1]}MWh', annot_benefit=True) | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
							
								
								
									
										22
									
								
								main.ipynb
									
									
									
									
									
								
							
							
						
						
									
										22
									
								
								main.ipynb
									
									
									
									
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
		Reference in New Issue
	
	Block a user