add a datsets option to specify the datset you want, add a plot script
This commit is contained in:
		
							
								
								
									
										48
									
								
								analyze.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										48
									
								
								analyze.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,48 @@ | ||||
| import csv | ||||
| import matplotlib.pyplot as plt | ||||
| from scipy import stats | ||||
| import pandas as pd | ||||
|  | ||||
| def plot(l): | ||||
|     labels = ['0-10k', '10k-20k,', '20k-30k', '30k-40k', '40k-50k', '50k-60k', '60k-70k'] | ||||
|     l = [i/15625 for i in l] | ||||
|     l = l[:7] | ||||
|     plt.bar(labels, l) | ||||
|     plt.savefig('plot.png') | ||||
|  | ||||
| def analyse(filename): | ||||
|     l = [0 for i in range(10)] | ||||
|     scores = [] | ||||
|     count = 0 | ||||
|     best_value = -1 | ||||
|     with open(filename) as file: | ||||
|         reader = csv.reader(file) | ||||
|         header = next(reader) | ||||
|         data = [row for row in reader] | ||||
|          | ||||
|         for row in data: | ||||
|             score = row[0] | ||||
|             best_value = max(best_value, float(score)) | ||||
|             # print(score) | ||||
|             ind = float(score) // 10000 | ||||
|             ind = int(ind) | ||||
|             l[ind] += 1 | ||||
|             acc = row[1] | ||||
|             index = row[2] | ||||
|             datas = list(zip(score, acc, index)) | ||||
|             scores.append(score) | ||||
|     print(max(scores)) | ||||
|     results = pd.DataFrame(datas, columns=['swap_score', 'valid_acc', 'index']) | ||||
|     print(results['swap_score'].max()) | ||||
|     print(best_value) | ||||
|     plot(l) | ||||
|     return stats.spearmanr(results.swap_score, results.valid_acc)[0] | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     print(analyse('output/swap_results.csv')) | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| @@ -39,6 +39,7 @@ parser.add_argument('--seed', default=0, type=int, help='random seed') | ||||
| parser.add_argument('--device', default="cuda", type=str, nargs='?', help='setup device (cpu, mps or cuda)') | ||||
| parser.add_argument('--repeats', default=32, type=int, nargs='?', help='times of calculating the training-free metric') | ||||
| parser.add_argument('--input_samples', default=16, type=int, nargs='?', help='input batch size for training-free metric') | ||||
| parser.add_argument('--datasets', default='cifar10', type=str, help='input datasets') | ||||
|  | ||||
| args = parser.parse_args() | ||||
|  | ||||
| @@ -48,7 +49,7 @@ if __name__ == "__main__": | ||||
|  | ||||
|     # arch_info = pd.read_csv(args.data_path+'/DARTS_archs_CIFAR10.csv', names=['genotype', 'valid_acc'], sep=',') | ||||
|      | ||||
|     train_data, _, _ = get_datasets('cifar10', args.data_path, (args.input_samples, 3, 32, 32), -1) | ||||
|     train_data, _, _ = get_datasets(args.datasets, args.data_path, (args.input_samples, 3, 32, 32), -1) | ||||
|     train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.input_samples, num_workers=0, pin_memory=True) | ||||
|     loader = iter(train_loader) | ||||
|     inputs, _ = next(loader)   | ||||
| @@ -63,11 +64,11 @@ if __name__ == "__main__": | ||||
|         # print(f'Evaluating network: {index}') | ||||
|         print(f'Evaluating network: {ind}') | ||||
|  | ||||
|         config = api.get_net_config(ind, 'cifar10') | ||||
|         config = api.get_net_config(ind, args.datasets) | ||||
|         network = get_cell_based_tiny_net(config) | ||||
|         # nas_results = api.query_by_index(i, 'cifar10') | ||||
|         # acc = nas_results[111].get_eval('ori-test') | ||||
|         nas_results = api.get_more_info(ind, 'cifar10', None, hp=200, is_random=False) | ||||
|         nas_results = api.get_more_info(ind, args.datasets, None, hp=200, is_random=False) | ||||
|         acc = nas_results['test-accuracy'] | ||||
|  | ||||
|         # print(type(network)) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user