add autodl
This commit is contained in:
		
							
								
								
									
										137
									
								
								AutoDL-Projects/exps/NAS-Bench-201/check.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										137
									
								
								AutoDL-Projects/exps/NAS-Bench-201/check.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,137 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ##################################################### | ||||
| # python exps/NAS-Bench-201/check.py --base_str C16-N5-LESS | ||||
| ##################################################### | ||||
| import sys, time, argparse, collections | ||||
| import torch | ||||
| from pathlib import Path | ||||
| from collections import defaultdict | ||||
|  | ||||
| from xautodl.log_utils import AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
|  | ||||
| def check_files(save_dir, meta_file, basestr): | ||||
|     meta_infos = torch.load(meta_file, map_location="cpu") | ||||
|     meta_archs = meta_infos["archs"] | ||||
|     meta_num_archs = meta_infos["total"] | ||||
|     assert meta_num_archs == len( | ||||
|         meta_archs | ||||
|     ), "invalid number of archs : {:} vs {:}".format(meta_num_archs, len(meta_archs)) | ||||
|  | ||||
|     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | ||||
|     print( | ||||
|         "{:} find {:} directories used to save checkpoints".format( | ||||
|             time_string(), len(sub_model_dirs) | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|     subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|     num_seeds = defaultdict(lambda: 0) | ||||
|     for index, sub_dir in enumerate(sub_model_dirs): | ||||
|         xcheckpoints = list(sub_dir.glob("arch-*-seed-*.pth")) | ||||
|         # xcheckpoints = list(sub_dir.glob('arch-*-seed-0777.pth')) + list(sub_dir.glob('arch-*-seed-0888.pth')) + list(sub_dir.glob('arch-*-seed-0999.pth')) | ||||
|         arch_indexes = set() | ||||
|         for checkpoint in xcheckpoints: | ||||
|             temp_names = checkpoint.name.split("-") | ||||
|             assert ( | ||||
|                 len(temp_names) == 4 | ||||
|                 and temp_names[0] == "arch" | ||||
|                 and temp_names[2] == "seed" | ||||
|             ), "invalid checkpoint name : {:}".format(checkpoint.name) | ||||
|             arch_indexes.add(temp_names[1]) | ||||
|         subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|         num_evaluated_arch += len(arch_indexes) | ||||
|         # count number of seeds for each architecture | ||||
|         for arch_index in arch_indexes: | ||||
|             num_seeds[ | ||||
|                 len(list(sub_dir.glob("arch-{:}-seed-*.pth".format(arch_index)))) | ||||
|             ] += 1 | ||||
|     print( | ||||
|         "There are {:5d} architectures that have been evaluated ({:} in total, {:} ckps in total).".format( | ||||
|             num_evaluated_arch, meta_num_archs, sum(k * v for k, v in num_seeds.items()) | ||||
|         ) | ||||
|     ) | ||||
|     for key in sorted(list(num_seeds.keys())): | ||||
|         print( | ||||
|             "There are {:5d} architectures that are evaluated {:} times.".format( | ||||
|                 num_seeds[key], key | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|     dir2ckps, dir2ckp_exists = dict(), dict() | ||||
|     start_time, epoch_time = time.time(), AverageMeter() | ||||
|     for IDX, (sub_dir, arch_indexes) in enumerate(subdir2archs.items()): | ||||
|         if basestr == "C16-N5": | ||||
|             seeds = [777, 888, 999] | ||||
|         elif basestr == "C16-N5-LESS": | ||||
|             seeds = [111, 777] | ||||
|         else: | ||||
|             raise ValueError("Invalid base str : {:}".format(basestr)) | ||||
|         numrs = defaultdict(lambda: 0) | ||||
|         all_checkpoints, all_ckp_exists = [], [] | ||||
|         for arch_index in arch_indexes: | ||||
|             checkpoints = [ | ||||
|                 "arch-{:}-seed-{:04d}.pth".format(arch_index, seed) for seed in seeds | ||||
|             ] | ||||
|             ckp_exists = [(sub_dir / x).exists() for x in checkpoints] | ||||
|             arch_index = int(arch_index) | ||||
|             assert ( | ||||
|                 0 <= arch_index < len(meta_archs) | ||||
|             ), "invalid arch-index {:} (not found in meta_archs)".format(arch_index) | ||||
|             all_checkpoints += checkpoints | ||||
|             all_ckp_exists += ckp_exists | ||||
|             numrs[sum(ckp_exists)] += 1 | ||||
|         dir2ckps[str(sub_dir)] = all_checkpoints | ||||
|         dir2ckp_exists[str(sub_dir)] = all_ckp_exists | ||||
|         # measure time | ||||
|         epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|         numrstr = ", ".join( | ||||
|             ["{:}: {:03d}".format(x, numrs[x]) for x in sorted(numrs.keys())] | ||||
|         ) | ||||
|         print( | ||||
|             "{:} load [{:2d}/{:2d}] [{:03d} archs] [{:04d}->{:04d} ckps] {:} done, need {:}. {:}".format( | ||||
|                 time_string(), | ||||
|                 IDX + 1, | ||||
|                 len(subdir2archs), | ||||
|                 len(arch_indexes), | ||||
|                 len(all_checkpoints), | ||||
|                 sum(all_ckp_exists), | ||||
|                 sub_dir, | ||||
|                 convert_secs2time(epoch_time.avg * (len(subdir2archs) - IDX - 1), True), | ||||
|                 numrstr, | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NAS Benchmark 201", | ||||
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--base_save_dir", | ||||
|         type=str, | ||||
|         default="./output/NAS-BENCH-201-4", | ||||
|         help="The base-name of folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_path", | ||||
|         type=str, | ||||
|         default="./output/NAS-BENCH-201-4/meta-node-4.pth", | ||||
|         help="The meta file path.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--base_str", type=str, default="C16-N5", help="The basic string." | ||||
|     ) | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     save_dir = Path(args.base_save_dir) | ||||
|     meta_path = Path(args.meta_path) | ||||
|     assert save_dir.exists(), "invalid save dir path : {:}".format(save_dir) | ||||
|     assert meta_path.exists(), "invalid saved meta path : {:}".format(meta_path) | ||||
|     print("check NAS-Bench-201 in {:}".format(save_dir)) | ||||
|  | ||||
|     check_files(save_dir, meta_path, args.base_str) | ||||
							
								
								
									
										37
									
								
								AutoDL-Projects/exps/NAS-Bench-201/dist-setup.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								AutoDL-Projects/exps/NAS-Bench-201/dist-setup.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,37 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ##################################################### | ||||
| # [2020.02.25] Initialize the API as v1.1 | ||||
| # [2020.03.09] Upgrade the API to v1.2 | ||||
| # [2020.03.16] Upgrade the API to v1.3 | ||||
| # [2020.06.30] Upgrade the API to v2.0 | ||||
| import os | ||||
| from setuptools import setup | ||||
|  | ||||
|  | ||||
| def read(fname="README.md"): | ||||
|     with open( | ||||
|         os.path.join(os.path.dirname(__file__), fname), encoding="utf-8" | ||||
|     ) as cfile: | ||||
|         return cfile.read() | ||||
|  | ||||
|  | ||||
| setup( | ||||
|     name="nas_bench_201", | ||||
|     version="2.0", | ||||
|     author="Xuanyi Dong", | ||||
|     author_email="dongxuanyi888@gmail.com", | ||||
|     description="API for NAS-Bench-201 (a benchmark for neural architecture search).", | ||||
|     license="MIT", | ||||
|     keywords="NAS Dataset API DeepLearning", | ||||
|     url="https://github.com/D-X-Y/NAS-Bench-201", | ||||
|     packages=["nas_201_api"], | ||||
|     long_description=read("README.md"), | ||||
|     long_description_content_type="text/markdown", | ||||
|     classifiers=[ | ||||
|         "Programming Language :: Python", | ||||
|         "Topic :: Database", | ||||
|         "Topic :: Scientific/Engineering :: Artificial Intelligence", | ||||
|         "License :: OSI Approved :: MIT License", | ||||
|     ], | ||||
| ) | ||||
							
								
								
									
										182
									
								
								AutoDL-Projects/exps/NAS-Bench-201/functions.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										182
									
								
								AutoDL-Projects/exps/NAS-Bench-201/functions.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,182 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ##################################################### | ||||
| import time, torch | ||||
| from procedures import prepare_seed, get_optim_scheduler | ||||
| from utils import get_model_infos, obtain_accuracy | ||||
| from config_utils import dict2config | ||||
| from log_utils import AverageMeter, time_string, convert_secs2time | ||||
| from models import get_cell_based_tiny_net | ||||
|  | ||||
|  | ||||
| __all__ = ["evaluate_for_seed", "pure_evaluate"] | ||||
|  | ||||
|  | ||||
| def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()): | ||||
|     data_time, batch_time, batch = AverageMeter(), AverageMeter(), None | ||||
|     losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|     latencies = [] | ||||
|     network.eval() | ||||
|     with torch.no_grad(): | ||||
|         end = time.time() | ||||
|         for i, (inputs, targets) in enumerate(xloader): | ||||
|             targets = targets.cuda(non_blocking=True) | ||||
|             inputs = inputs.cuda(non_blocking=True) | ||||
|             data_time.update(time.time() - end) | ||||
|             # forward | ||||
|             features, logits = network(inputs) | ||||
|             loss = criterion(logits, targets) | ||||
|             batch_time.update(time.time() - end) | ||||
|             if batch is None or batch == inputs.size(0): | ||||
|                 batch = inputs.size(0) | ||||
|                 latencies.append(batch_time.val - data_time.val) | ||||
|             # record loss and accuracy | ||||
|             prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | ||||
|             losses.update(loss.item(), inputs.size(0)) | ||||
|             top1.update(prec1.item(), inputs.size(0)) | ||||
|             top5.update(prec5.item(), inputs.size(0)) | ||||
|             end = time.time() | ||||
|     if len(latencies) > 2: | ||||
|         latencies = latencies[1:] | ||||
|     return losses.avg, top1.avg, top5.avg, latencies | ||||
|  | ||||
|  | ||||
| def procedure(xloader, network, criterion, scheduler, optimizer, mode): | ||||
|     losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|     if mode == "train": | ||||
|         network.train() | ||||
|     elif mode == "valid": | ||||
|         network.eval() | ||||
|     else: | ||||
|         raise ValueError("The mode is not right : {:}".format(mode)) | ||||
|  | ||||
|     data_time, batch_time, end = AverageMeter(), AverageMeter(), time.time() | ||||
|     for i, (inputs, targets) in enumerate(xloader): | ||||
|         if mode == "train": | ||||
|             scheduler.update(None, 1.0 * i / len(xloader)) | ||||
|  | ||||
|         targets = targets.cuda(non_blocking=True) | ||||
|         if mode == "train": | ||||
|             optimizer.zero_grad() | ||||
|         # forward | ||||
|         features, logits = network(inputs) | ||||
|         loss = criterion(logits, targets) | ||||
|         # backward | ||||
|         if mode == "train": | ||||
|             loss.backward() | ||||
|             optimizer.step() | ||||
|         # record loss and accuracy | ||||
|         prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | ||||
|         losses.update(loss.item(), inputs.size(0)) | ||||
|         top1.update(prec1.item(), inputs.size(0)) | ||||
|         top5.update(prec5.item(), inputs.size(0)) | ||||
|         # count time | ||||
|         batch_time.update(time.time() - end) | ||||
|         end = time.time() | ||||
|     return losses.avg, top1.avg, top5.avg, batch_time.sum | ||||
|  | ||||
|  | ||||
| def evaluate_for_seed( | ||||
|     arch_config, config, arch, train_loader, valid_loaders, seed, logger | ||||
| ): | ||||
|  | ||||
|     prepare_seed(seed)  # random seed | ||||
|     net = get_cell_based_tiny_net( | ||||
|         dict2config( | ||||
|             { | ||||
|                 "name": "infer.tiny", | ||||
|                 "C": arch_config["channel"], | ||||
|                 "N": arch_config["num_cells"], | ||||
|                 "genotype": arch, | ||||
|                 "num_classes": config.class_num, | ||||
|             }, | ||||
|             None, | ||||
|         ) | ||||
|     ) | ||||
|     # net = TinyNetwork(arch_config['channel'], arch_config['num_cells'], arch, config.class_num) | ||||
|     flop, param = get_model_infos(net, config.xshape) | ||||
|     logger.log("Network : {:}".format(net.get_message()), False) | ||||
|     logger.log( | ||||
|         "{:} Seed-------------------------- {:} --------------------------".format( | ||||
|             time_string(), seed | ||||
|         ) | ||||
|     ) | ||||
|     logger.log("FLOP = {:} MB, Param = {:} MB".format(flop, param)) | ||||
|     # train and valid | ||||
|     optimizer, scheduler, criterion = get_optim_scheduler(net.parameters(), config) | ||||
|     network, criterion = torch.nn.DataParallel(net).cuda(), criterion.cuda() | ||||
|     # start training | ||||
|     start_time, epoch_time, total_epoch = ( | ||||
|         time.time(), | ||||
|         AverageMeter(), | ||||
|         config.epochs + config.warmup, | ||||
|     ) | ||||
|     ( | ||||
|         train_losses, | ||||
|         train_acc1es, | ||||
|         train_acc5es, | ||||
|         valid_losses, | ||||
|         valid_acc1es, | ||||
|         valid_acc5es, | ||||
|     ) = ({}, {}, {}, {}, {}, {}) | ||||
|     train_times, valid_times = {}, {} | ||||
|     for epoch in range(total_epoch): | ||||
|         scheduler.update(epoch, 0.0) | ||||
|  | ||||
|         train_loss, train_acc1, train_acc5, train_tm = procedure( | ||||
|             train_loader, network, criterion, scheduler, optimizer, "train" | ||||
|         ) | ||||
|         train_losses[epoch] = train_loss | ||||
|         train_acc1es[epoch] = train_acc1 | ||||
|         train_acc5es[epoch] = train_acc5 | ||||
|         train_times[epoch] = train_tm | ||||
|         with torch.no_grad(): | ||||
|             for key, xloder in valid_loaders.items(): | ||||
|                 valid_loss, valid_acc1, valid_acc5, valid_tm = procedure( | ||||
|                     xloder, network, criterion, None, None, "valid" | ||||
|                 ) | ||||
|                 valid_losses["{:}@{:}".format(key, epoch)] = valid_loss | ||||
|                 valid_acc1es["{:}@{:}".format(key, epoch)] = valid_acc1 | ||||
|                 valid_acc5es["{:}@{:}".format(key, epoch)] = valid_acc5 | ||||
|                 valid_times["{:}@{:}".format(key, epoch)] = valid_tm | ||||
|  | ||||
|         # measure elapsed time | ||||
|         epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(epoch_time.avg * (total_epoch - epoch - 1), True) | ||||
|         ) | ||||
|         logger.log( | ||||
|             "{:} {:} epoch={:03d}/{:03d} :: Train [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%] Valid [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%]".format( | ||||
|                 time_string(), | ||||
|                 need_time, | ||||
|                 epoch, | ||||
|                 total_epoch, | ||||
|                 train_loss, | ||||
|                 train_acc1, | ||||
|                 train_acc5, | ||||
|                 valid_loss, | ||||
|                 valid_acc1, | ||||
|                 valid_acc5, | ||||
|             ) | ||||
|         ) | ||||
|     info_seed = { | ||||
|         "flop": flop, | ||||
|         "param": param, | ||||
|         "channel": arch_config["channel"], | ||||
|         "num_cells": arch_config["num_cells"], | ||||
|         "config": config._asdict(), | ||||
|         "total_epoch": total_epoch, | ||||
|         "train_losses": train_losses, | ||||
|         "train_acc1es": train_acc1es, | ||||
|         "train_acc5es": train_acc5es, | ||||
|         "train_times": train_times, | ||||
|         "valid_losses": valid_losses, | ||||
|         "valid_acc1es": valid_acc1es, | ||||
|         "valid_acc5es": valid_acc5es, | ||||
|         "valid_times": valid_times, | ||||
|         "net_state_dict": net.state_dict(), | ||||
|         "net_string": "{:}".format(net), | ||||
|         "finish-train": True, | ||||
|     } | ||||
|     return info_seed | ||||
							
								
								
									
										668
									
								
								AutoDL-Projects/exps/NAS-Bench-201/main.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										668
									
								
								AutoDL-Projects/exps/NAS-Bench-201/main.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,668 @@ | ||||
| ############################################################### | ||||
| # NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # | ||||
| ############################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08           # | ||||
| ############################################################### | ||||
| import os, sys, time, torch, random, argparse | ||||
| from PIL import ImageFile | ||||
|  | ||||
| ImageFile.LOAD_TRUNCATED_IMAGES = True | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| from xautodl.config_utils import load_config | ||||
| from xautodl.procedures import save_checkpoint, copy_checkpoint | ||||
| from xautodl.procedures import get_machine_info | ||||
| from xautodl.datasets import get_datasets | ||||
| from xautodl.log_utils import Logger, AverageMeter, time_string, convert_secs2time | ||||
| from xautodl.models import CellStructure, CellArchitectures, get_search_spaces | ||||
| from xautodl.functions import evaluate_for_seed | ||||
|  | ||||
|  | ||||
| def evaluate_all_datasets( | ||||
|     arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger | ||||
| ): | ||||
|     machine_info, arch_config = get_machine_info(), deepcopy(arch_config) | ||||
|     all_infos = {"info": machine_info} | ||||
|     all_dataset_keys = [] | ||||
|     # look all the datasets | ||||
|     for dataset, xpath, split in zip(datasets, xpaths, splits): | ||||
|         # train valid data | ||||
|         train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|         # load the configuration | ||||
|         if dataset == "cifar10" or dataset == "cifar100": | ||||
|             if use_less: | ||||
|                 config_path = "configs/nas-benchmark/LESS.config" | ||||
|             else: | ||||
|                 config_path = "configs/nas-benchmark/CIFAR.config" | ||||
|             split_info = load_config( | ||||
|                 "configs/nas-benchmark/cifar-split.txt", None, None | ||||
|             ) | ||||
|         elif dataset.startswith("ImageNet16"): | ||||
|             if use_less: | ||||
|                 config_path = "configs/nas-benchmark/LESS.config" | ||||
|             else: | ||||
|                 config_path = "configs/nas-benchmark/ImageNet-16.config" | ||||
|             split_info = load_config( | ||||
|                 "configs/nas-benchmark/{:}-split.txt".format(dataset), None, None | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("invalid dataset : {:}".format(dataset)) | ||||
|         config = load_config( | ||||
|             config_path, {"class_num": class_num, "xshape": xshape}, logger | ||||
|         ) | ||||
|         # check whether use splited validation set | ||||
|         if bool(split): | ||||
|             assert dataset == "cifar10" | ||||
|             ValLoaders = { | ||||
|                 "ori-test": torch.utils.data.DataLoader( | ||||
|                     valid_data, | ||||
|                     batch_size=config.batch_size, | ||||
|                     shuffle=False, | ||||
|                     num_workers=workers, | ||||
|                     pin_memory=True, | ||||
|                 ) | ||||
|             } | ||||
|             assert len(train_data) == len(split_info.train) + len( | ||||
|                 split_info.valid | ||||
|             ), "invalid length : {:} vs {:} + {:}".format( | ||||
|                 len(train_data), len(split_info.train), len(split_info.valid) | ||||
|             ) | ||||
|             train_data_v2 = deepcopy(train_data) | ||||
|             train_data_v2.transform = valid_data.transform | ||||
|             valid_data = train_data_v2 | ||||
|             # data loader | ||||
|             train_loader = torch.utils.data.DataLoader( | ||||
|                 train_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             valid_loader = torch.utils.data.DataLoader( | ||||
|                 valid_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             ValLoaders["x-valid"] = valid_loader | ||||
|         else: | ||||
|             # data loader | ||||
|             train_loader = torch.utils.data.DataLoader( | ||||
|                 train_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 shuffle=True, | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             valid_loader = torch.utils.data.DataLoader( | ||||
|                 valid_data, | ||||
|                 batch_size=config.batch_size, | ||||
|                 shuffle=False, | ||||
|                 num_workers=workers, | ||||
|                 pin_memory=True, | ||||
|             ) | ||||
|             if dataset == "cifar10": | ||||
|                 ValLoaders = {"ori-test": valid_loader} | ||||
|             elif dataset == "cifar100": | ||||
|                 cifar100_splits = load_config( | ||||
|                     "configs/nas-benchmark/cifar100-test-split.txt", None, None | ||||
|                 ) | ||||
|                 ValLoaders = { | ||||
|                     "ori-test": valid_loader, | ||||
|                     "x-valid": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             cifar100_splits.xvalid | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                     "x-test": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             cifar100_splits.xtest | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                 } | ||||
|             elif dataset == "ImageNet16-120": | ||||
|                 imagenet16_splits = load_config( | ||||
|                     "configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None | ||||
|                 ) | ||||
|                 ValLoaders = { | ||||
|                     "ori-test": valid_loader, | ||||
|                     "x-valid": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             imagenet16_splits.xvalid | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                     "x-test": torch.utils.data.DataLoader( | ||||
|                         valid_data, | ||||
|                         batch_size=config.batch_size, | ||||
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | ||||
|                             imagenet16_splits.xtest | ||||
|                         ), | ||||
|                         num_workers=workers, | ||||
|                         pin_memory=True, | ||||
|                     ), | ||||
|                 } | ||||
|             else: | ||||
|                 raise ValueError("invalid dataset : {:}".format(dataset)) | ||||
|  | ||||
|         dataset_key = "{:}".format(dataset) | ||||
|         if bool(split): | ||||
|             dataset_key = dataset_key + "-valid" | ||||
|         logger.log( | ||||
|             "Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( | ||||
|                 dataset_key, | ||||
|                 len(train_data), | ||||
|                 len(valid_data), | ||||
|                 len(train_loader), | ||||
|                 len(valid_loader), | ||||
|                 config.batch_size, | ||||
|             ) | ||||
|         ) | ||||
|         logger.log( | ||||
|             "Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config) | ||||
|         ) | ||||
|         for key, value in ValLoaders.items(): | ||||
|             logger.log( | ||||
|                 "Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value)) | ||||
|             ) | ||||
|         results = evaluate_for_seed( | ||||
|             arch_config, config, arch, train_loader, ValLoaders, seed, logger | ||||
|         ) | ||||
|         all_infos[dataset_key] = results | ||||
|         all_dataset_keys.append(dataset_key) | ||||
|     all_infos["all_dataset_keys"] = all_dataset_keys | ||||
|     return all_infos | ||||
|  | ||||
|  | ||||
| def main( | ||||
|     save_dir, | ||||
|     workers, | ||||
|     datasets, | ||||
|     xpaths, | ||||
|     splits, | ||||
|     use_less, | ||||
|     srange, | ||||
|     arch_index, | ||||
|     seeds, | ||||
|     cover_mode, | ||||
|     meta_info, | ||||
|     arch_config, | ||||
| ): | ||||
|     assert torch.cuda.is_available(), "CUDA is not available." | ||||
|     torch.backends.cudnn.enabled = True | ||||
|     # torch.backends.cudnn.benchmark = True | ||||
|     torch.backends.cudnn.deterministic = True | ||||
|     torch.set_num_threads(workers) | ||||
|  | ||||
|     assert ( | ||||
|         len(srange) == 2 and 0 <= srange[0] <= srange[1] | ||||
|     ), "invalid srange : {:}".format(srange) | ||||
|  | ||||
|     if use_less: | ||||
|         sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}-LESS".format( | ||||
|             srange[0], srange[1], arch_config["channel"], arch_config["num_cells"] | ||||
|         ) | ||||
|     else: | ||||
|         sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}".format( | ||||
|             srange[0], srange[1], arch_config["channel"], arch_config["num_cells"] | ||||
|         ) | ||||
|     logger = Logger(str(sub_dir), 0, False) | ||||
|  | ||||
|     all_archs = meta_info["archs"] | ||||
|     assert srange[1] < meta_info["total"], "invalid range : {:}-{:} vs. {:}".format( | ||||
|         srange[0], srange[1], meta_info["total"] | ||||
|     ) | ||||
|     assert ( | ||||
|         arch_index == -1 or srange[0] <= arch_index <= srange[1] | ||||
|     ), "invalid range : {:} vs. {:} vs. {:}".format(srange[0], arch_index, srange[1]) | ||||
|     if arch_index == -1: | ||||
|         to_evaluate_indexes = list(range(srange[0], srange[1] + 1)) | ||||
|     else: | ||||
|         to_evaluate_indexes = [arch_index] | ||||
|     logger.log("xargs : seeds      = {:}".format(seeds)) | ||||
|     logger.log("xargs : arch_index = {:}".format(arch_index)) | ||||
|     logger.log("xargs : cover_mode = {:}".format(cover_mode)) | ||||
|     logger.log("-" * 100) | ||||
|  | ||||
|     logger.log( | ||||
|         "Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}".format( | ||||
|             srange[0], arch_index, srange[1], meta_info["total"], cover_mode | ||||
|         ) | ||||
|     ) | ||||
|     for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | ||||
|         logger.log( | ||||
|             "--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}".format( | ||||
|                 i, len(datasets), dataset, xpath, split | ||||
|             ) | ||||
|         ) | ||||
|     logger.log("--->>> architecture config : {:}".format(arch_config)) | ||||
|  | ||||
|     start_time, epoch_time = time.time(), AverageMeter() | ||||
|     for i, index in enumerate(to_evaluate_indexes): | ||||
|         arch = all_archs[index] | ||||
|         logger.log( | ||||
|             "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}".format( | ||||
|                 "-" * 15, | ||||
|                 i, | ||||
|                 len(to_evaluate_indexes), | ||||
|                 index, | ||||
|                 meta_info["total"], | ||||
|                 seeds, | ||||
|                 "-" * 15, | ||||
|             ) | ||||
|         ) | ||||
|         # logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) | ||||
|         logger.log("{:} {:} {:}".format("-" * 15, arch, "-" * 15)) | ||||
|  | ||||
|         # test this arch on different datasets with different seeds | ||||
|         has_continue = False | ||||
|         for seed in seeds: | ||||
|             to_save_name = sub_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) | ||||
|             if to_save_name.exists(): | ||||
|                 if cover_mode: | ||||
|                     logger.log( | ||||
|                         "Find existing file : {:}, remove it before evaluation".format( | ||||
|                             to_save_name | ||||
|                         ) | ||||
|                     ) | ||||
|                     os.remove(str(to_save_name)) | ||||
|                 else: | ||||
|                     logger.log( | ||||
|                         "Find existing file : {:}, skip this evaluation".format( | ||||
|                             to_save_name | ||||
|                         ) | ||||
|                     ) | ||||
|                     has_continue = True | ||||
|                     continue | ||||
|             results = evaluate_all_datasets( | ||||
|                 CellStructure.str2structure(arch), | ||||
|                 datasets, | ||||
|                 xpaths, | ||||
|                 splits, | ||||
|                 use_less, | ||||
|                 seed, | ||||
|                 arch_config, | ||||
|                 workers, | ||||
|                 logger, | ||||
|             ) | ||||
|             torch.save(results, to_save_name) | ||||
|             logger.log( | ||||
|                 "{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}".format( | ||||
|                     "-" * 15, | ||||
|                     i, | ||||
|                     len(to_evaluate_indexes), | ||||
|                     index, | ||||
|                     meta_info["total"], | ||||
|                     seed, | ||||
|                     to_save_name, | ||||
|                 ) | ||||
|             ) | ||||
|         # measure elapsed time | ||||
|         if not has_continue: | ||||
|             epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True) | ||||
|         ) | ||||
|         logger.log( | ||||
|             "This arch costs : {:}".format(convert_secs2time(epoch_time.val, True)) | ||||
|         ) | ||||
|         logger.log("{:}".format("*" * 100)) | ||||
|         logger.log( | ||||
|             "{:}   {:74s}   {:}".format( | ||||
|                 "*" * 10, | ||||
|                 "{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format( | ||||
|                     i, len(to_evaluate_indexes), index, meta_info["total"], need_time | ||||
|                 ), | ||||
|                 "*" * 10, | ||||
|             ) | ||||
|         ) | ||||
|         logger.log("{:}".format("*" * 100)) | ||||
|  | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| def train_single_model( | ||||
|     save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config | ||||
| ): | ||||
|     assert torch.cuda.is_available(), "CUDA is not available." | ||||
|     torch.backends.cudnn.enabled = True | ||||
|     torch.backends.cudnn.deterministic = True | ||||
|     # torch.backends.cudnn.benchmark = True | ||||
|     torch.set_num_threads(workers) | ||||
|  | ||||
|     save_dir = ( | ||||
|         Path(save_dir) | ||||
|         / "specifics" | ||||
|         / "{:}-{:}-{:}-{:}".format( | ||||
|             "LESS" if use_less else "FULL", | ||||
|             model_str, | ||||
|             arch_config["channel"], | ||||
|             arch_config["num_cells"], | ||||
|         ) | ||||
|     ) | ||||
|     logger = Logger(str(save_dir), 0, False) | ||||
|     if model_str in CellArchitectures: | ||||
|         arch = CellArchitectures[model_str] | ||||
|         logger.log( | ||||
|             "The model string is found in pre-defined architecture dict : {:}".format( | ||||
|                 model_str | ||||
|             ) | ||||
|         ) | ||||
|     else: | ||||
|         try: | ||||
|             arch = CellStructure.str2structure(model_str) | ||||
|         except: | ||||
|             raise ValueError( | ||||
|                 "Invalid model string : {:}. It can not be found or parsed.".format( | ||||
|                     model_str | ||||
|                 ) | ||||
|             ) | ||||
|     assert arch.check_valid_op( | ||||
|         get_search_spaces("cell", "full") | ||||
|     ), "{:} has the invalid op.".format(arch) | ||||
|     logger.log("Start train-evaluate {:}".format(arch.tostr())) | ||||
|     logger.log("arch_config : {:}".format(arch_config)) | ||||
|  | ||||
|     start_time, seed_time = time.time(), AverageMeter() | ||||
|     for _is, seed in enumerate(seeds): | ||||
|         logger.log( | ||||
|             "\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------".format( | ||||
|                 _is, len(seeds), seed | ||||
|             ) | ||||
|         ) | ||||
|         to_save_name = save_dir / "seed-{:04d}.pth".format(seed) | ||||
|         if to_save_name.exists(): | ||||
|             logger.log( | ||||
|                 "Find the existing file {:}, directly load!".format(to_save_name) | ||||
|             ) | ||||
|             checkpoint = torch.load(to_save_name) | ||||
|         else: | ||||
|             logger.log( | ||||
|                 "Does not find the existing file {:}, train and evaluate!".format( | ||||
|                     to_save_name | ||||
|                 ) | ||||
|             ) | ||||
|             checkpoint = evaluate_all_datasets( | ||||
|                 arch, | ||||
|                 datasets, | ||||
|                 xpaths, | ||||
|                 splits, | ||||
|                 use_less, | ||||
|                 seed, | ||||
|                 arch_config, | ||||
|                 workers, | ||||
|                 logger, | ||||
|             ) | ||||
|             torch.save(checkpoint, to_save_name) | ||||
|         # log information | ||||
|         logger.log("{:}".format(checkpoint["info"])) | ||||
|         all_dataset_keys = checkpoint["all_dataset_keys"] | ||||
|         for dataset_key in all_dataset_keys: | ||||
|             logger.log( | ||||
|                 "\n{:} dataset : {:} {:}".format("-" * 15, dataset_key, "-" * 15) | ||||
|             ) | ||||
|             dataset_info = checkpoint[dataset_key] | ||||
|             # logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) | ||||
|             logger.log( | ||||
|                 "Flops = {:} MB, Params = {:} MB".format( | ||||
|                     dataset_info["flop"], dataset_info["param"] | ||||
|                 ) | ||||
|             ) | ||||
|             logger.log("config : {:}".format(dataset_info["config"])) | ||||
|             logger.log( | ||||
|                 "Training State (finish) = {:}".format(dataset_info["finish-train"]) | ||||
|             ) | ||||
|             last_epoch = dataset_info["total_epoch"] - 1 | ||||
|             train_acc1es, train_acc5es = ( | ||||
|                 dataset_info["train_acc1es"], | ||||
|                 dataset_info["train_acc5es"], | ||||
|             ) | ||||
|             valid_acc1es, valid_acc5es = ( | ||||
|                 dataset_info["valid_acc1es"], | ||||
|                 dataset_info["valid_acc5es"], | ||||
|             ) | ||||
|             logger.log( | ||||
|                 "Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%".format( | ||||
|                     train_acc1es[last_epoch], | ||||
|                     train_acc5es[last_epoch], | ||||
|                     100 - train_acc1es[last_epoch], | ||||
|                     valid_acc1es[last_epoch], | ||||
|                     valid_acc5es[last_epoch], | ||||
|                     100 - valid_acc1es[last_epoch], | ||||
|                 ) | ||||
|             ) | ||||
|         # measure elapsed time | ||||
|         seed_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True) | ||||
|         ) | ||||
|         logger.log( | ||||
|             "\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}".format( | ||||
|                 _is, len(seeds), seed, need_time | ||||
|             ) | ||||
|         ) | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| def generate_meta_info(save_dir, max_node, divide=40): | ||||
|     aa_nas_bench_ss = get_search_spaces("cell", "nas-bench-201") | ||||
|     archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|     print( | ||||
|         "There are {:} archs vs {:}.".format( | ||||
|             len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2) | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|     random.seed(88)  # please do not change this line for reproducibility | ||||
|     random.shuffle(archs) | ||||
|     # to test fixed-random shuffle | ||||
|     # print ('arch [0] : {:}\n---->>>>   {:}'.format( archs[0], archs[0].tostr() )) | ||||
|     # print ('arch [9] : {:}\n---->>>>   {:}'.format( archs[9], archs[9].tostr() )) | ||||
|     assert ( | ||||
|         archs[0].tostr() | ||||
|         == "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|" | ||||
|     ), "please check the 0-th architecture : {:}".format(archs[0]) | ||||
|     assert ( | ||||
|         archs[9].tostr() | ||||
|         == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" | ||||
|     ), "please check the 9-th architecture : {:}".format(archs[9]) | ||||
|     assert ( | ||||
|         archs[123].tostr() | ||||
|         == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" | ||||
|     ), "please check the 123-th architecture : {:}".format(archs[123]) | ||||
|     total_arch = len(archs) | ||||
|  | ||||
|     num = 50000 | ||||
|     indexes_5W = list(range(num)) | ||||
|     random.seed(1021) | ||||
|     random.shuffle(indexes_5W) | ||||
|     train_split = sorted(list(set(indexes_5W[: num // 2]))) | ||||
|     valid_split = sorted(list(set(indexes_5W[num // 2 :]))) | ||||
|     assert len(train_split) + len(valid_split) == num | ||||
|     assert ( | ||||
|         train_split[0] == 0 | ||||
|         and train_split[10] == 26 | ||||
|         and train_split[111] == 203 | ||||
|         and valid_split[0] == 1 | ||||
|         and valid_split[10] == 18 | ||||
|         and valid_split[111] == 242 | ||||
|     ), "{:} {:} {:} - {:} {:} {:}".format( | ||||
|         train_split[0], | ||||
|         train_split[10], | ||||
|         train_split[111], | ||||
|         valid_split[0], | ||||
|         valid_split[10], | ||||
|         valid_split[111], | ||||
|     ) | ||||
|     splits = {num: {"train": train_split, "valid": valid_split}} | ||||
|  | ||||
|     info = { | ||||
|         "archs": [x.tostr() for x in archs], | ||||
|         "total": total_arch, | ||||
|         "max_node": max_node, | ||||
|         "splits": splits, | ||||
|     } | ||||
|  | ||||
|     save_dir = Path(save_dir) | ||||
|     save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     save_name = save_dir / "meta-node-{:}.pth".format(max_node) | ||||
|     assert not save_name.exists(), "{:} already exist".format(save_name) | ||||
|     torch.save(info, save_name) | ||||
|     print("save the meta file into {:}".format(save_name)) | ||||
|  | ||||
|     script_name_full = save_dir / "BENCH-201-N{:}.opt-full.script".format(max_node) | ||||
|     script_name_less = save_dir / "BENCH-201-N{:}.opt-less.script".format(max_node) | ||||
|     full_file = open(str(script_name_full), "w") | ||||
|     less_file = open(str(script_name_less), "w") | ||||
|     gaps = total_arch // divide | ||||
|     for start in range(0, total_arch, gaps): | ||||
|         xend = min(start + gaps, total_arch) | ||||
|         full_file.write( | ||||
|             "bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 '777 888 999'\n".format( | ||||
|                 start, xend - 1 | ||||
|             ) | ||||
|         ) | ||||
|         less_file.write( | ||||
|             "bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 '777 888 999'\n".format( | ||||
|                 start, xend - 1 | ||||
|             ) | ||||
|         ) | ||||
|     print( | ||||
|         "save the training script into {:} and {:}".format( | ||||
|             script_name_full, script_name_less | ||||
|         ) | ||||
|     ) | ||||
|     full_file.close() | ||||
|     less_file.close() | ||||
|  | ||||
|     script_name = save_dir / "meta-node-{:}.cal-script.txt".format(max_node) | ||||
|     macro = "OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0" | ||||
|     with open(str(script_name), "w") as cfile: | ||||
|         for start in range(0, total_arch, gaps): | ||||
|             xend = min(start + gaps, total_arch) | ||||
|             cfile.write( | ||||
|                 "{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n".format( | ||||
|                     macro, start, xend - 1 | ||||
|                 ) | ||||
|             ) | ||||
|     print("save the post-processing script into {:}".format(script_name)) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     # mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | ||||
|     # parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NAS-Bench-201", | ||||
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||||
|     ) | ||||
|     parser.add_argument("--mode", type=str, required=True, help="The script mode.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", type=str, help="Folder to save checkpoints and log." | ||||
|     ) | ||||
|     parser.add_argument("--max_node", type=int, help="The maximum node in a cell.") | ||||
|     # use for train the model | ||||
|     parser.add_argument( | ||||
|         "--workers", | ||||
|         type=int, | ||||
|         default=8, | ||||
|         help="number of data loading workers (default: 2)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--srange", type=int, nargs="+", help="The range of models to be evaluated" | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--arch_index", | ||||
|         type=int, | ||||
|         default=-1, | ||||
|         help="The architecture index to be evaluated (cover mode).", | ||||
|     ) | ||||
|     parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.") | ||||
|     parser.add_argument( | ||||
|         "--xpaths", type=str, nargs="+", help="The root path for this dataset." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--splits", type=int, nargs="+", help="The root path for this dataset." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--use_less", | ||||
|         type=int, | ||||
|         default=0, | ||||
|         choices=[0, 1], | ||||
|         help="Using the less-training-epoch config.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--seeds", type=int, nargs="+", help="The range of models to be evaluated" | ||||
|     ) | ||||
|     parser.add_argument("--channel", type=int, help="The number of channels.") | ||||
|     parser.add_argument( | ||||
|         "--num_cells", type=int, help="The number of cells in one stage." | ||||
|     ) | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     assert args.mode in ["meta", "new", "cover"] or args.mode.startswith( | ||||
|         "specific-" | ||||
|     ), "invalid mode : {:}".format(args.mode) | ||||
|  | ||||
|     if args.mode == "meta": | ||||
|         generate_meta_info(args.save_dir, args.max_node) | ||||
|     elif args.mode.startswith("specific"): | ||||
|         assert len(args.mode.split("-")) == 2, "invalid mode : {:}".format(args.mode) | ||||
|         model_str = args.mode.split("-")[1] | ||||
|         train_single_model( | ||||
|             args.save_dir, | ||||
|             args.workers, | ||||
|             args.datasets, | ||||
|             args.xpaths, | ||||
|             args.splits, | ||||
|             args.use_less > 0, | ||||
|             tuple(args.seeds), | ||||
|             model_str, | ||||
|             {"channel": args.channel, "num_cells": args.num_cells}, | ||||
|         ) | ||||
|     else: | ||||
|         meta_path = Path(args.save_dir) / "meta-node-{:}.pth".format(args.max_node) | ||||
|         assert meta_path.exists(), "{:} does not exist.".format(meta_path) | ||||
|         meta_info = torch.load(meta_path) | ||||
|         # check whether args is ok | ||||
|         assert ( | ||||
|             len(args.srange) == 2 and args.srange[0] <= args.srange[1] | ||||
|         ), "invalid length of srange args: {:}".format(args.srange) | ||||
|         assert len(args.seeds) > 0, "invalid length of seeds args: {:}".format( | ||||
|             args.seeds | ||||
|         ) | ||||
|         assert ( | ||||
|             len(args.datasets) == len(args.xpaths) == len(args.splits) | ||||
|         ), "invalid infos : {:} vs {:} vs {:}".format( | ||||
|             len(args.datasets), len(args.xpaths), len(args.splits) | ||||
|         ) | ||||
|         assert args.workers > 0, "invalid number of workers : {:}".format(args.workers) | ||||
|  | ||||
|         main( | ||||
|             args.save_dir, | ||||
|             args.workers, | ||||
|             args.datasets, | ||||
|             args.xpaths, | ||||
|             args.splits, | ||||
|             args.use_less > 0, | ||||
|             tuple(args.srange), | ||||
|             args.arch_index, | ||||
|             tuple(args.seeds), | ||||
|             args.mode == "cover", | ||||
|             meta_info, | ||||
|             {"channel": args.channel, "num_cells": args.num_cells}, | ||||
|         ) | ||||
							
								
								
									
										43
									
								
								AutoDL-Projects/exps/NAS-Bench-201/show-best.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										43
									
								
								AutoDL-Projects/exps/NAS-Bench-201/show-best.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,43 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 # | ||||
| ################################################################################################ | ||||
| # python exps/NAS-Bench-201/show-best.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth # | ||||
| ################################################################################################ | ||||
| import argparse | ||||
| from pathlib import Path | ||||
|  | ||||
| from nas_201_api import NASBench201API as API | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|     parser.add_argument( | ||||
|         "--api_path", | ||||
|         type=str, | ||||
|         default=None, | ||||
|         help="The path to the NAS-Bench-201 benchmark file.", | ||||
|     ) | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     meta_file = Path(args.api_path) | ||||
|     assert meta_file.exists(), "invalid path for api : {:}".format(meta_file) | ||||
|  | ||||
|     api = API(str(meta_file)) | ||||
|  | ||||
|     # This will show the results of the best architecture based on the validation set of each dataset. | ||||
|     arch_index, accuracy = api.find_best("cifar10-valid", "x-valid", None, None, False) | ||||
|     print("FOR CIFAR-010, using the hyper-parameters with 200 training epochs :::") | ||||
|     print("arch-index={:5d}, arch={:}".format(arch_index, api.arch(arch_index))) | ||||
|     api.show(arch_index) | ||||
|     print("") | ||||
|  | ||||
|     arch_index, accuracy = api.find_best("cifar100", "x-valid", None, None, False) | ||||
|     print("FOR CIFAR-100, using the hyper-parameters with 200 training epochs :::") | ||||
|     print("arch-index={:5d}, arch={:}".format(arch_index, api.arch(arch_index))) | ||||
|     api.show(arch_index) | ||||
|     print("") | ||||
|  | ||||
|     arch_index, accuracy = api.find_best("ImageNet16-120", "x-valid", None, None, False) | ||||
|     print("FOR ImageNet16-120, using the hyper-parameters with 200 training epochs :::") | ||||
|     print("arch-index={:5d}, arch={:}".format(arch_index, api.arch(arch_index))) | ||||
|     api.show(arch_index) | ||||
|     print("") | ||||
							
								
								
									
										553
									
								
								AutoDL-Projects/exps/NAS-Bench-201/statistics-v2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										553
									
								
								AutoDL-Projects/exps/NAS-Bench-201/statistics-v2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,553 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ##################################################### | ||||
| import os, sys, time, argparse, collections | ||||
| import numpy as np | ||||
| import torch | ||||
| from pathlib import Path | ||||
| from collections import defaultdict, OrderedDict | ||||
| from typing import Dict, Any, Text, List | ||||
|  | ||||
| from xautodl.log_utils import AverageMeter, time_string, convert_secs2time | ||||
| from xautodl.config_utils import dict2config | ||||
|  | ||||
| # NAS-Bench-201 related module or function | ||||
| from xautodl.models import CellStructure, get_cell_based_tiny_net | ||||
| from xautodl.procedures import ( | ||||
|     bench_pure_evaluate as pure_evaluate, | ||||
|     get_nas_bench_loaders, | ||||
| ) | ||||
| from nas_201_api import NASBench201API, ArchResults, ResultsCount | ||||
|  | ||||
| api = NASBench201API( | ||||
|     "{:}/.torch/NAS-Bench-201-v1_0-e61699.pth".format(os.environ["HOME"]) | ||||
| ) | ||||
|  | ||||
|  | ||||
| def create_result_count( | ||||
|     used_seed: int, | ||||
|     dataset: Text, | ||||
|     arch_config: Dict[Text, Any], | ||||
|     results: Dict[Text, Any], | ||||
|     dataloader_dict: Dict[Text, Any], | ||||
| ) -> ResultsCount: | ||||
|     xresult = ResultsCount( | ||||
|         dataset, | ||||
|         results["net_state_dict"], | ||||
|         results["train_acc1es"], | ||||
|         results["train_losses"], | ||||
|         results["param"], | ||||
|         results["flop"], | ||||
|         arch_config, | ||||
|         used_seed, | ||||
|         results["total_epoch"], | ||||
|         None, | ||||
|     ) | ||||
|     net_config = dict2config( | ||||
|         { | ||||
|             "name": "infer.tiny", | ||||
|             "C": arch_config["channel"], | ||||
|             "N": arch_config["num_cells"], | ||||
|             "genotype": CellStructure.str2structure(arch_config["arch_str"]), | ||||
|             "num_classes": arch_config["class_num"], | ||||
|         }, | ||||
|         None, | ||||
|     ) | ||||
|     network = get_cell_based_tiny_net(net_config) | ||||
|     network.load_state_dict(xresult.get_net_param()) | ||||
|     if "train_times" in results:  # new version | ||||
|         xresult.update_train_info( | ||||
|             results["train_acc1es"], | ||||
|             results["train_acc5es"], | ||||
|             results["train_losses"], | ||||
|             results["train_times"], | ||||
|         ) | ||||
|         xresult.update_eval( | ||||
|             results["valid_acc1es"], results["valid_losses"], results["valid_times"] | ||||
|         ) | ||||
|     else: | ||||
|         if dataset == "cifar10-valid": | ||||
|             xresult.update_OLD_eval( | ||||
|                 "x-valid", results["valid_acc1es"], results["valid_losses"] | ||||
|             ) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format("cifar10", "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval( | ||||
|                 "ori-test", | ||||
|                 {results["total_epoch"] - 1: top1}, | ||||
|                 {results["total_epoch"] - 1: loss}, | ||||
|             ) | ||||
|             xresult.update_latency(latencies) | ||||
|         elif dataset == "cifar10": | ||||
|             xresult.update_OLD_eval( | ||||
|                 "ori-test", results["valid_acc1es"], results["valid_losses"] | ||||
|             ) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_latency(latencies) | ||||
|         elif dataset == "cifar100" or dataset == "ImageNet16-120": | ||||
|             xresult.update_OLD_eval( | ||||
|                 "ori-test", results["valid_acc1es"], results["valid_losses"] | ||||
|             ) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "valid")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval( | ||||
|                 "x-valid", | ||||
|                 {results["total_epoch"] - 1: top1}, | ||||
|                 {results["total_epoch"] - 1: loss}, | ||||
|             ) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval( | ||||
|                 "x-test", | ||||
|                 {results["total_epoch"] - 1: top1}, | ||||
|                 {results["total_epoch"] - 1: loss}, | ||||
|             ) | ||||
|             xresult.update_latency(latencies) | ||||
|         else: | ||||
|             raise ValueError("invalid dataset name : {:}".format(dataset)) | ||||
|     return xresult | ||||
|  | ||||
|  | ||||
| def account_one_arch( | ||||
|     arch_index: int, | ||||
|     arch_str: Text, | ||||
|     checkpoints: List[Text], | ||||
|     datasets: List[Text], | ||||
|     dataloader_dict: Dict[Text, Any], | ||||
| ) -> ArchResults: | ||||
|     information = ArchResults(arch_index, arch_str) | ||||
|  | ||||
|     for checkpoint_path in checkpoints: | ||||
|         checkpoint = torch.load(checkpoint_path, map_location="cpu") | ||||
|         used_seed = checkpoint_path.name.split("-")[-1].split(".")[0] | ||||
|         ok_dataset = 0 | ||||
|         for dataset in datasets: | ||||
|             if dataset not in checkpoint: | ||||
|                 print( | ||||
|                     "Can not find {:} in arch-{:} from {:}".format( | ||||
|                         dataset, arch_index, checkpoint_path | ||||
|                     ) | ||||
|                 ) | ||||
|                 continue | ||||
|             else: | ||||
|                 ok_dataset += 1 | ||||
|             results = checkpoint[dataset] | ||||
|             assert results[ | ||||
|                 "finish-train" | ||||
|             ], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format( | ||||
|                 arch_index, used_seed, dataset, checkpoint_path | ||||
|             ) | ||||
|             arch_config = { | ||||
|                 "channel": results["channel"], | ||||
|                 "num_cells": results["num_cells"], | ||||
|                 "arch_str": arch_str, | ||||
|                 "class_num": results["config"]["class_num"], | ||||
|             } | ||||
|  | ||||
|             xresult = create_result_count( | ||||
|                 used_seed, dataset, arch_config, results, dataloader_dict | ||||
|             ) | ||||
|             information.update(dataset, int(used_seed), xresult) | ||||
|         if ok_dataset == 0: | ||||
|             raise ValueError("{:} does not find any data".format(checkpoint_path)) | ||||
|     return information | ||||
|  | ||||
|  | ||||
| def correct_time_related_info( | ||||
|     arch_index: int, arch_info_full: ArchResults, arch_info_less: ArchResults | ||||
| ): | ||||
|     # calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth | ||||
|     cifar010_latency = ( | ||||
|         api.get_latency(arch_index, "cifar10-valid", hp="200") | ||||
|         + api.get_latency(arch_index, "cifar10", hp="200") | ||||
|     ) / 2 | ||||
|     arch_info_full.reset_latency("cifar10-valid", None, cifar010_latency) | ||||
|     arch_info_full.reset_latency("cifar10", None, cifar010_latency) | ||||
|     arch_info_less.reset_latency("cifar10-valid", None, cifar010_latency) | ||||
|     arch_info_less.reset_latency("cifar10", None, cifar010_latency) | ||||
|  | ||||
|     cifar100_latency = api.get_latency(arch_index, "cifar100", hp="200") | ||||
|     arch_info_full.reset_latency("cifar100", None, cifar100_latency) | ||||
|     arch_info_less.reset_latency("cifar100", None, cifar100_latency) | ||||
|  | ||||
|     image_latency = api.get_latency(arch_index, "ImageNet16-120", hp="200") | ||||
|     arch_info_full.reset_latency("ImageNet16-120", None, image_latency) | ||||
|     arch_info_less.reset_latency("ImageNet16-120", None, image_latency) | ||||
|  | ||||
|     train_per_epoch_time = list( | ||||
|         arch_info_less.query("cifar10-valid", 777).train_times.values() | ||||
|     ) | ||||
|     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|     eval_ori_test_time, eval_x_valid_time = [], [] | ||||
|     for key, value in arch_info_less.query("cifar10-valid", 777).eval_times.items(): | ||||
|         if key.startswith("ori-test@"): | ||||
|             eval_ori_test_time.append(value) | ||||
|         elif key.startswith("x-valid@"): | ||||
|             eval_x_valid_time.append(value) | ||||
|         else: | ||||
|             raise ValueError("-- {:} --".format(key)) | ||||
|     eval_ori_test_time, eval_x_valid_time = float(np.mean(eval_ori_test_time)), float( | ||||
|         np.mean(eval_x_valid_time) | ||||
|     ) | ||||
|     nums = { | ||||
|         "ImageNet16-120-train": 151700, | ||||
|         "ImageNet16-120-valid": 3000, | ||||
|         "ImageNet16-120-test": 6000, | ||||
|         "cifar10-valid-train": 25000, | ||||
|         "cifar10-valid-valid": 25000, | ||||
|         "cifar10-train": 50000, | ||||
|         "cifar10-test": 10000, | ||||
|         "cifar100-train": 50000, | ||||
|         "cifar100-test": 10000, | ||||
|         "cifar100-valid": 5000, | ||||
|     } | ||||
|     eval_per_sample = (eval_ori_test_time + eval_x_valid_time) / ( | ||||
|         nums["cifar10-valid-valid"] + nums["cifar10-test"] | ||||
|     ) | ||||
|     for arch_info in [arch_info_less, arch_info_full]: | ||||
|         arch_info.reset_pseudo_train_times( | ||||
|             "cifar10-valid", | ||||
|             None, | ||||
|             train_per_epoch_time | ||||
|             / nums["cifar10-valid-train"] | ||||
|             * nums["cifar10-valid-train"], | ||||
|         ) | ||||
|         arch_info.reset_pseudo_train_times( | ||||
|             "cifar10", | ||||
|             None, | ||||
|             train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar10-train"], | ||||
|         ) | ||||
|         arch_info.reset_pseudo_train_times( | ||||
|             "cifar100", | ||||
|             None, | ||||
|             train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar100-train"], | ||||
|         ) | ||||
|         arch_info.reset_pseudo_train_times( | ||||
|             "ImageNet16-120", | ||||
|             None, | ||||
|             train_per_epoch_time | ||||
|             / nums["cifar10-valid-train"] | ||||
|             * nums["ImageNet16-120-train"], | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "cifar10-valid", | ||||
|             None, | ||||
|             "x-valid", | ||||
|             eval_per_sample * nums["cifar10-valid-valid"], | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "cifar10-valid", None, "ori-test", eval_per_sample * nums["cifar10-test"] | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "cifar10", None, "ori-test", eval_per_sample * nums["cifar10-test"] | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "cifar100", None, "x-valid", eval_per_sample * nums["cifar100-valid"] | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "cifar100", None, "x-test", eval_per_sample * nums["cifar100-valid"] | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "cifar100", None, "ori-test", eval_per_sample * nums["cifar100-test"] | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "ImageNet16-120", | ||||
|             None, | ||||
|             "x-valid", | ||||
|             eval_per_sample * nums["ImageNet16-120-valid"], | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "ImageNet16-120", | ||||
|             None, | ||||
|             "x-test", | ||||
|             eval_per_sample * nums["ImageNet16-120-valid"], | ||||
|         ) | ||||
|         arch_info.reset_pseudo_eval_times( | ||||
|             "ImageNet16-120", | ||||
|             None, | ||||
|             "ori-test", | ||||
|             eval_per_sample * nums["ImageNet16-120-test"], | ||||
|         ) | ||||
|     # arch_info_full.debug_test() | ||||
|     # arch_info_less.debug_test() | ||||
|     return arch_info_full, arch_info_less | ||||
|  | ||||
|  | ||||
| def simplify(save_dir, meta_file, basestr, target_dir): | ||||
|     meta_infos = torch.load(meta_file, map_location="cpu") | ||||
|     meta_archs = meta_infos["archs"]  # a list of architecture strings | ||||
|     meta_num_archs = meta_infos["total"] | ||||
|     assert meta_num_archs == len( | ||||
|         meta_archs | ||||
|     ), "invalid number of archs : {:} vs {:}".format(meta_num_archs, len(meta_archs)) | ||||
|  | ||||
|     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | ||||
|     print( | ||||
|         "{:} find {:} directories used to save checkpoints".format( | ||||
|             time_string(), len(sub_model_dirs) | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|     subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|     num_seeds = defaultdict(lambda: 0) | ||||
|     for index, sub_dir in enumerate(sub_model_dirs): | ||||
|         xcheckpoints = list(sub_dir.glob("arch-*-seed-*.pth")) | ||||
|         arch_indexes = set() | ||||
|         for checkpoint in xcheckpoints: | ||||
|             temp_names = checkpoint.name.split("-") | ||||
|             assert ( | ||||
|                 len(temp_names) == 4 | ||||
|                 and temp_names[0] == "arch" | ||||
|                 and temp_names[2] == "seed" | ||||
|             ), "invalid checkpoint name : {:}".format(checkpoint.name) | ||||
|             arch_indexes.add(temp_names[1]) | ||||
|         subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|         num_evaluated_arch += len(arch_indexes) | ||||
|         # count number of seeds for each architecture | ||||
|         for arch_index in arch_indexes: | ||||
|             num_seeds[ | ||||
|                 len(list(sub_dir.glob("arch-{:}-seed-*.pth".format(arch_index)))) | ||||
|             ] += 1 | ||||
|     print( | ||||
|         "{:} There are {:5d} architectures that have been evaluated ({:} in total).".format( | ||||
|             time_string(), num_evaluated_arch, meta_num_archs | ||||
|         ) | ||||
|     ) | ||||
|     for key in sorted(list(num_seeds.keys())): | ||||
|         print( | ||||
|             "{:} There are {:5d} architectures that are evaluated {:} times.".format( | ||||
|                 time_string(), num_seeds[key], key | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|     dataloader_dict = get_nas_bench_loaders(6) | ||||
|     to_save_simply = save_dir / "simplifies" | ||||
|     to_save_allarc = save_dir / "simplifies" / "architectures" | ||||
|     if not to_save_simply.exists(): | ||||
|         to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|     if not to_save_allarc.exists(): | ||||
|         to_save_allarc.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|     assert (save_dir / target_dir) in subdir2archs, "can not find {:}".format( | ||||
|         target_dir | ||||
|     ) | ||||
|     arch2infos, datasets = {}, ( | ||||
|         "cifar10-valid", | ||||
|         "cifar10", | ||||
|         "cifar100", | ||||
|         "ImageNet16-120", | ||||
|     ) | ||||
|     evaluated_indexes = set() | ||||
|     target_full_dir = save_dir / target_dir | ||||
|     target_less_dir = save_dir / "{:}-LESS".format(target_dir) | ||||
|     arch_indexes = subdir2archs[target_full_dir] | ||||
|     num_seeds = defaultdict(lambda: 0) | ||||
|     end_time = time.time() | ||||
|     arch_time = AverageMeter() | ||||
|     for idx, arch_index in enumerate(arch_indexes): | ||||
|         checkpoints = list( | ||||
|             target_full_dir.glob("arch-{:}-seed-*.pth".format(arch_index)) | ||||
|         ) | ||||
|         ckps_less = list(target_less_dir.glob("arch-{:}-seed-*.pth".format(arch_index))) | ||||
|         # create the arch info for each architecture | ||||
|         try: | ||||
|             arch_info_full = account_one_arch( | ||||
|                 arch_index, | ||||
|                 meta_archs[int(arch_index)], | ||||
|                 checkpoints, | ||||
|                 datasets, | ||||
|                 dataloader_dict, | ||||
|             ) | ||||
|             arch_info_less = account_one_arch( | ||||
|                 arch_index, | ||||
|                 meta_archs[int(arch_index)], | ||||
|                 ckps_less, | ||||
|                 datasets, | ||||
|                 dataloader_dict, | ||||
|             ) | ||||
|             num_seeds[len(checkpoints)] += 1 | ||||
|         except: | ||||
|             print("Loading {:} failed, : {:}".format(arch_index, checkpoints)) | ||||
|             continue | ||||
|         assert ( | ||||
|             int(arch_index) not in evaluated_indexes | ||||
|         ), "conflict arch-index : {:}".format(arch_index) | ||||
|         assert ( | ||||
|             0 <= int(arch_index) < len(meta_archs) | ||||
|         ), "invalid arch-index {:} (not found in meta_archs)".format(arch_index) | ||||
|         arch_info = {"full": arch_info_full, "less": arch_info_less} | ||||
|         evaluated_indexes.add(int(arch_index)) | ||||
|         arch2infos[int(arch_index)] = arch_info | ||||
|         # to correct the latency and training_time info. | ||||
|         arch_info_full, arch_info_less = correct_time_related_info( | ||||
|             int(arch_index), arch_info_full, arch_info_less | ||||
|         ) | ||||
|         to_save_data = OrderedDict( | ||||
|             full=arch_info_full.state_dict(), less=arch_info_less.state_dict() | ||||
|         ) | ||||
|         torch.save(to_save_data, to_save_allarc / "{:}-FULL.pth".format(arch_index)) | ||||
|         arch_info["full"].clear_params() | ||||
|         arch_info["less"].clear_params() | ||||
|         torch.save(to_save_data, to_save_allarc / "{:}-SIMPLE.pth".format(arch_index)) | ||||
|         # measure elapsed time | ||||
|         arch_time.update(time.time() - end_time) | ||||
|         end_time = time.time() | ||||
|         need_time = "{:}".format( | ||||
|             convert_secs2time(arch_time.avg * (len(arch_indexes) - idx - 1), True) | ||||
|         ) | ||||
|         print( | ||||
|             "{:} {:} [{:03d}/{:03d}] : {:} still need {:}".format( | ||||
|                 time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time | ||||
|             ) | ||||
|         ) | ||||
|     # measure time | ||||
|     xstrs = [ | ||||
|         "{:}:{:03d}".format(key, num_seeds[key]) | ||||
|         for key in sorted(list(num_seeds.keys())) | ||||
|     ] | ||||
|     print("{:} {:} done : {:}".format(time_string(), target_dir, xstrs)) | ||||
|     final_infos = { | ||||
|         "meta_archs": meta_archs, | ||||
|         "total_archs": meta_num_archs, | ||||
|         "basestr": basestr, | ||||
|         "arch2infos": arch2infos, | ||||
|         "evaluated_indexes": evaluated_indexes, | ||||
|     } | ||||
|     save_file_name = to_save_simply / "{:}.pth".format(target_dir) | ||||
|     torch.save(final_infos, save_file_name) | ||||
|     print( | ||||
|         "Save {:} / {:} architecture results into {:}.".format( | ||||
|             len(evaluated_indexes), meta_num_archs, save_file_name | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def merge_all(save_dir, meta_file, basestr): | ||||
|     meta_infos = torch.load(meta_file, map_location="cpu") | ||||
|     meta_archs = meta_infos["archs"] | ||||
|     meta_num_archs = meta_infos["total"] | ||||
|     assert meta_num_archs == len( | ||||
|         meta_archs | ||||
|     ), "invalid number of archs : {:} vs {:}".format(meta_num_archs, len(meta_archs)) | ||||
|  | ||||
|     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | ||||
|     print( | ||||
|         "{:} find {:} directories used to save checkpoints".format( | ||||
|             time_string(), len(sub_model_dirs) | ||||
|         ) | ||||
|     ) | ||||
|     for index, sub_dir in enumerate(sub_model_dirs): | ||||
|         arch_info_files = sorted(list(sub_dir.glob("arch-*-seed-*.pth"))) | ||||
|         print( | ||||
|             "The {:02d}/{:02d}-th directory : {:} : {:} runs.".format( | ||||
|                 index, len(sub_model_dirs), sub_dir, len(arch_info_files) | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|     arch2infos, evaluated_indexes = dict(), set() | ||||
|     for IDX, sub_dir in enumerate(sub_model_dirs): | ||||
|         ckp_path = sub_dir.parent / "simplifies" / "{:}.pth".format(sub_dir.name) | ||||
|         if ckp_path.exists(): | ||||
|             sub_ckps = torch.load(ckp_path, map_location="cpu") | ||||
|             assert ( | ||||
|                 sub_ckps["total_archs"] == meta_num_archs | ||||
|                 and sub_ckps["basestr"] == basestr | ||||
|             ) | ||||
|             xarch2infos = sub_ckps["arch2infos"] | ||||
|             xevalindexs = sub_ckps["evaluated_indexes"] | ||||
|             for eval_index in xevalindexs: | ||||
|                 assert ( | ||||
|                     eval_index not in evaluated_indexes and eval_index not in arch2infos | ||||
|                 ) | ||||
|                 # arch2infos[eval_index] = xarch2infos[eval_index].state_dict() | ||||
|                 arch2infos[eval_index] = { | ||||
|                     "full": xarch2infos[eval_index]["full"].state_dict(), | ||||
|                     "less": xarch2infos[eval_index]["less"].state_dict(), | ||||
|                 } | ||||
|                 evaluated_indexes.add(eval_index) | ||||
|             print( | ||||
|                 "{:} [{:03d}/{:03d}] merge data from {:} with {:} models.".format( | ||||
|                     time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs) | ||||
|                 ) | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("Can not find {:}".format(ckp_path)) | ||||
|             # print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path)) | ||||
|  | ||||
|     evaluated_indexes = sorted(list(evaluated_indexes)) | ||||
|     print( | ||||
|         "Finally, there are {:} architectures that have been trained and evaluated.".format( | ||||
|             len(evaluated_indexes) | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|     to_save_simply = save_dir / "simplifies" | ||||
|     if not to_save_simply.exists(): | ||||
|         to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|     final_infos = { | ||||
|         "meta_archs": meta_archs, | ||||
|         "total_archs": meta_num_archs, | ||||
|         "arch2infos": arch2infos, | ||||
|         "evaluated_indexes": evaluated_indexes, | ||||
|     } | ||||
|     save_file_name = to_save_simply / "{:}-final-infos.pth".format(basestr) | ||||
|     torch.save(final_infos, save_file_name) | ||||
|     print( | ||||
|         "Save {:} / {:} architecture results into {:}.".format( | ||||
|             len(evaluated_indexes), meta_num_archs, save_file_name | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NAS-BENCH-201", | ||||
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--mode", | ||||
|         type=str, | ||||
|         choices=["cal", "merge"], | ||||
|         help="The running mode for this script.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--base_save_dir", | ||||
|         type=str, | ||||
|         default="./output/NAS-BENCH-201-4", | ||||
|         help="The base-name of folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument("--target_dir", type=str, help="The target directory.") | ||||
|     parser.add_argument( | ||||
|         "--max_node", type=int, default=4, help="The maximum node in a cell." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--channel", type=int, default=16, help="The number of channels." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--num_cells", type=int, default=5, help="The number of cells in one stage." | ||||
|     ) | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     save_dir = Path(args.base_save_dir) | ||||
|     meta_path = save_dir / "meta-node-{:}.pth".format(args.max_node) | ||||
|     assert save_dir.exists(), "invalid save dir path : {:}".format(save_dir) | ||||
|     assert meta_path.exists(), "invalid saved meta path : {:}".format(meta_path) | ||||
|     print( | ||||
|         "start the statistics of our nas-benchmark from {:} using {:}.".format( | ||||
|             save_dir, args.target_dir | ||||
|         ) | ||||
|     ) | ||||
|     basestr = "C{:}-N{:}".format(args.channel, args.num_cells) | ||||
|  | ||||
|     if args.mode == "cal": | ||||
|         simplify(save_dir, meta_path, basestr, args.target_dir) | ||||
|     elif args.mode == "merge": | ||||
|         merge_all(save_dir, meta_path, basestr) | ||||
|     else: | ||||
|         raise ValueError("invalid mode : {:}".format(args.mode)) | ||||
							
								
								
									
										665
									
								
								AutoDL-Projects/exps/NAS-Bench-201/statistics.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										665
									
								
								AutoDL-Projects/exps/NAS-Bench-201/statistics.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,665 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ##################################################### | ||||
| import os, sys, time, argparse, collections | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| from pathlib import Path | ||||
| from collections import defaultdict | ||||
|  | ||||
| from xautodl.log_utils import AverageMeter, time_string, convert_secs2time | ||||
| from xautodl.config_utils import load_config, dict2config | ||||
| from xautodl.datasets import get_datasets | ||||
|  | ||||
| # NAS-Bench-201 related module or function | ||||
| from xautodl.models import CellStructure, get_cell_based_tiny_net | ||||
| from xautodl.procedures import bench_pure_evaluate as pure_evaluate | ||||
| from nas_201_api import ArchResults, ResultsCount | ||||
|  | ||||
|  | ||||
| def create_result_count(used_seed, dataset, arch_config, results, dataloader_dict): | ||||
|     xresult = ResultsCount( | ||||
|         dataset, | ||||
|         results["net_state_dict"], | ||||
|         results["train_acc1es"], | ||||
|         results["train_losses"], | ||||
|         results["param"], | ||||
|         results["flop"], | ||||
|         arch_config, | ||||
|         used_seed, | ||||
|         results["total_epoch"], | ||||
|         None, | ||||
|     ) | ||||
|  | ||||
|     net_config = dict2config( | ||||
|         { | ||||
|             "name": "infer.tiny", | ||||
|             "C": arch_config["channel"], | ||||
|             "N": arch_config["num_cells"], | ||||
|             "genotype": CellStructure.str2structure(arch_config["arch_str"]), | ||||
|             "num_classes": arch_config["class_num"], | ||||
|         }, | ||||
|         None, | ||||
|     ) | ||||
|     network = get_cell_based_tiny_net(net_config) | ||||
|     network.load_state_dict(xresult.get_net_param()) | ||||
|     if "train_times" in results:  # new version | ||||
|         xresult.update_train_info( | ||||
|             results["train_acc1es"], | ||||
|             results["train_acc5es"], | ||||
|             results["train_losses"], | ||||
|             results["train_times"], | ||||
|         ) | ||||
|         xresult.update_eval( | ||||
|             results["valid_acc1es"], results["valid_losses"], results["valid_times"] | ||||
|         ) | ||||
|     else: | ||||
|         if dataset == "cifar10-valid": | ||||
|             xresult.update_OLD_eval( | ||||
|                 "x-valid", results["valid_acc1es"], results["valid_losses"] | ||||
|             ) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format("cifar10", "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval( | ||||
|                 "ori-test", | ||||
|                 {results["total_epoch"] - 1: top1}, | ||||
|                 {results["total_epoch"] - 1: loss}, | ||||
|             ) | ||||
|             xresult.update_latency(latencies) | ||||
|         elif dataset == "cifar10": | ||||
|             xresult.update_OLD_eval( | ||||
|                 "ori-test", results["valid_acc1es"], results["valid_losses"] | ||||
|             ) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_latency(latencies) | ||||
|         elif dataset == "cifar100" or dataset == "ImageNet16-120": | ||||
|             xresult.update_OLD_eval( | ||||
|                 "ori-test", results["valid_acc1es"], results["valid_losses"] | ||||
|             ) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "valid")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval( | ||||
|                 "x-valid", | ||||
|                 {results["total_epoch"] - 1: top1}, | ||||
|                 {results["total_epoch"] - 1: loss}, | ||||
|             ) | ||||
|             loss, top1, top5, latencies = pure_evaluate( | ||||
|                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda() | ||||
|             ) | ||||
|             xresult.update_OLD_eval( | ||||
|                 "x-test", | ||||
|                 {results["total_epoch"] - 1: top1}, | ||||
|                 {results["total_epoch"] - 1: loss}, | ||||
|             ) | ||||
|             xresult.update_latency(latencies) | ||||
|         else: | ||||
|             raise ValueError("invalid dataset name : {:}".format(dataset)) | ||||
|     return xresult | ||||
|  | ||||
|  | ||||
| def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict): | ||||
|     information = ArchResults(arch_index, arch_str) | ||||
|  | ||||
|     for checkpoint_path in checkpoints: | ||||
|         checkpoint = torch.load(checkpoint_path, map_location="cpu") | ||||
|         used_seed = checkpoint_path.name.split("-")[-1].split(".")[0] | ||||
|         for dataset in datasets: | ||||
|             assert ( | ||||
|                 dataset in checkpoint | ||||
|             ), "Can not find {:} in arch-{:} from {:}".format( | ||||
|                 dataset, arch_index, checkpoint_path | ||||
|             ) | ||||
|             results = checkpoint[dataset] | ||||
|             assert results[ | ||||
|                 "finish-train" | ||||
|             ], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format( | ||||
|                 arch_index, used_seed, dataset, checkpoint_path | ||||
|             ) | ||||
|             arch_config = { | ||||
|                 "channel": results["channel"], | ||||
|                 "num_cells": results["num_cells"], | ||||
|                 "arch_str": arch_str, | ||||
|                 "class_num": results["config"]["class_num"], | ||||
|             } | ||||
|  | ||||
|             xresult = create_result_count( | ||||
|                 used_seed, dataset, arch_config, results, dataloader_dict | ||||
|             ) | ||||
|             information.update(dataset, int(used_seed), xresult) | ||||
|     return information | ||||
|  | ||||
|  | ||||
| def GET_DataLoaders(workers): | ||||
|  | ||||
|     torch.set_num_threads(workers) | ||||
|  | ||||
|     root_dir = (Path(__file__).parent / ".." / "..").resolve() | ||||
|     torch_dir = Path(os.environ["TORCH_HOME"]) | ||||
|     # cifar | ||||
|     cifar_config_path = root_dir / "configs" / "nas-benchmark" / "CIFAR.config" | ||||
|     cifar_config = load_config(cifar_config_path, None, None) | ||||
|     print("{:} Create data-loader for all datasets".format(time_string())) | ||||
|     print("-" * 200) | ||||
|     TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets( | ||||
|         "cifar10", str(torch_dir / "cifar.python"), -1 | ||||
|     ) | ||||
|     print( | ||||
|         "original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | ||||
|             len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num | ||||
|         ) | ||||
|     ) | ||||
|     cifar10_splits = load_config( | ||||
|         root_dir / "configs" / "nas-benchmark" / "cifar-split.txt", None, None | ||||
|     ) | ||||
|     assert cifar10_splits.train[:10] == [ | ||||
|         0, | ||||
|         5, | ||||
|         7, | ||||
|         11, | ||||
|         13, | ||||
|         15, | ||||
|         16, | ||||
|         17, | ||||
|         20, | ||||
|         24, | ||||
|     ] and cifar10_splits.valid[:10] == [ | ||||
|         1, | ||||
|         2, | ||||
|         3, | ||||
|         4, | ||||
|         6, | ||||
|         8, | ||||
|         9, | ||||
|         10, | ||||
|         12, | ||||
|         14, | ||||
|     ] | ||||
|     temp_dataset = deepcopy(TRAIN_CIFAR10) | ||||
|     temp_dataset.transform = VALID_CIFAR10.transform | ||||
|     # data loader | ||||
|     trainval_cifar10_loader = torch.utils.data.DataLoader( | ||||
|         TRAIN_CIFAR10, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         shuffle=True, | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     train_cifar10_loader = torch.utils.data.DataLoader( | ||||
|         TRAIN_CIFAR10, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     valid_cifar10_loader = torch.utils.data.DataLoader( | ||||
|         temp_dataset, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     test__cifar10_loader = torch.utils.data.DataLoader( | ||||
|         VALID_CIFAR10, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         shuffle=False, | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-10  : trval-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(trainval_cifar10_loader), cifar_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-10  : train-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(train_cifar10_loader), cifar_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-10  : valid-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(valid_cifar10_loader), cifar_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-10  : test--loader has {:3d} batch with {:} per batch".format( | ||||
|             len(test__cifar10_loader), cifar_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print("-" * 200) | ||||
|     # CIFAR-100 | ||||
|     TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets( | ||||
|         "cifar100", str(torch_dir / "cifar.python"), -1 | ||||
|     ) | ||||
|     print( | ||||
|         "original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | ||||
|             len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num | ||||
|         ) | ||||
|     ) | ||||
|     cifar100_splits = load_config( | ||||
|         root_dir / "configs" / "nas-benchmark" / "cifar100-test-split.txt", None, None | ||||
|     ) | ||||
|     assert cifar100_splits.xvalid[:10] == [ | ||||
|         1, | ||||
|         3, | ||||
|         4, | ||||
|         5, | ||||
|         8, | ||||
|         10, | ||||
|         13, | ||||
|         14, | ||||
|         15, | ||||
|         16, | ||||
|     ] and cifar100_splits.xtest[:10] == [ | ||||
|         0, | ||||
|         2, | ||||
|         6, | ||||
|         7, | ||||
|         9, | ||||
|         11, | ||||
|         12, | ||||
|         17, | ||||
|         20, | ||||
|         24, | ||||
|     ] | ||||
|     train_cifar100_loader = torch.utils.data.DataLoader( | ||||
|         TRAIN_CIFAR100, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         shuffle=True, | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     valid_cifar100_loader = torch.utils.data.DataLoader( | ||||
|         VALID_CIFAR100, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     test__cifar100_loader = torch.utils.data.DataLoader( | ||||
|         VALID_CIFAR100, | ||||
|         batch_size=cifar_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-100  : train-loader has {:3d} batch".format(len(train_cifar100_loader)) | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-100  : valid-loader has {:3d} batch".format(len(valid_cifar100_loader)) | ||||
|     ) | ||||
|     print( | ||||
|         "CIFAR-100  : test--loader has {:3d} batch".format(len(test__cifar100_loader)) | ||||
|     ) | ||||
|     print("-" * 200) | ||||
|  | ||||
|     imagenet16_config_path = "configs/nas-benchmark/ImageNet-16.config" | ||||
|     imagenet16_config = load_config(imagenet16_config_path, None, None) | ||||
|     TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets( | ||||
|         "ImageNet16-120", str(torch_dir / "cifar.python" / "ImageNet16"), -1 | ||||
|     ) | ||||
|     print( | ||||
|         "original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | ||||
|             len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num | ||||
|         ) | ||||
|     ) | ||||
|     imagenet_splits = load_config( | ||||
|         root_dir / "configs" / "nas-benchmark" / "imagenet-16-120-test-split.txt", | ||||
|         None, | ||||
|         None, | ||||
|     ) | ||||
|     assert imagenet_splits.xvalid[:10] == [ | ||||
|         1, | ||||
|         2, | ||||
|         3, | ||||
|         6, | ||||
|         7, | ||||
|         8, | ||||
|         9, | ||||
|         12, | ||||
|         16, | ||||
|         18, | ||||
|     ] and imagenet_splits.xtest[:10] == [ | ||||
|         0, | ||||
|         4, | ||||
|         5, | ||||
|         10, | ||||
|         11, | ||||
|         13, | ||||
|         14, | ||||
|         15, | ||||
|         17, | ||||
|         20, | ||||
|     ] | ||||
|     train_imagenet_loader = torch.utils.data.DataLoader( | ||||
|         TRAIN_ImageNet16_120, | ||||
|         batch_size=imagenet16_config.batch_size, | ||||
|         shuffle=True, | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     valid_imagenet_loader = torch.utils.data.DataLoader( | ||||
|         VALID_ImageNet16_120, | ||||
|         batch_size=imagenet16_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     test__imagenet_loader = torch.utils.data.DataLoader( | ||||
|         VALID_ImageNet16_120, | ||||
|         batch_size=imagenet16_config.batch_size, | ||||
|         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest), | ||||
|         num_workers=workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     print( | ||||
|         "ImageNet-16-120  : train-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(train_imagenet_loader), imagenet16_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "ImageNet-16-120  : valid-loader has {:3d} batch with {:} per batch".format( | ||||
|             len(valid_imagenet_loader), imagenet16_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|     print( | ||||
|         "ImageNet-16-120  : test--loader has {:3d} batch with {:} per batch".format( | ||||
|             len(test__imagenet_loader), imagenet16_config.batch_size | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|     # 'cifar10', 'cifar100', 'ImageNet16-120' | ||||
|     loaders = { | ||||
|         "cifar10@trainval": trainval_cifar10_loader, | ||||
|         "cifar10@train": train_cifar10_loader, | ||||
|         "cifar10@valid": valid_cifar10_loader, | ||||
|         "cifar10@test": test__cifar10_loader, | ||||
|         "cifar100@train": train_cifar100_loader, | ||||
|         "cifar100@valid": valid_cifar100_loader, | ||||
|         "cifar100@test": test__cifar100_loader, | ||||
|         "ImageNet16-120@train": train_imagenet_loader, | ||||
|         "ImageNet16-120@valid": valid_imagenet_loader, | ||||
|         "ImageNet16-120@test": test__imagenet_loader, | ||||
|     } | ||||
|     return loaders | ||||
|  | ||||
|  | ||||
| def simplify(save_dir, meta_file, basestr, target_dir): | ||||
|     meta_infos = torch.load(meta_file, map_location="cpu") | ||||
|     meta_archs = meta_infos["archs"]  # a list of architecture strings | ||||
|     meta_num_archs = meta_infos["total"] | ||||
|     meta_max_node = meta_infos["max_node"] | ||||
|     assert meta_num_archs == len( | ||||
|         meta_archs | ||||
|     ), "invalid number of archs : {:} vs {:}".format(meta_num_archs, len(meta_archs)) | ||||
|  | ||||
|     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | ||||
|     print( | ||||
|         "{:} find {:} directories used to save checkpoints".format( | ||||
|             time_string(), len(sub_model_dirs) | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|     subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|     num_seeds = defaultdict(lambda: 0) | ||||
|     for index, sub_dir in enumerate(sub_model_dirs): | ||||
|         xcheckpoints = list(sub_dir.glob("arch-*-seed-*.pth")) | ||||
|         arch_indexes = set() | ||||
|         for checkpoint in xcheckpoints: | ||||
|             temp_names = checkpoint.name.split("-") | ||||
|             assert ( | ||||
|                 len(temp_names) == 4 | ||||
|                 and temp_names[0] == "arch" | ||||
|                 and temp_names[2] == "seed" | ||||
|             ), "invalid checkpoint name : {:}".format(checkpoint.name) | ||||
|             arch_indexes.add(temp_names[1]) | ||||
|         subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|         num_evaluated_arch += len(arch_indexes) | ||||
|         # count number of seeds for each architecture | ||||
|         for arch_index in arch_indexes: | ||||
|             num_seeds[ | ||||
|                 len(list(sub_dir.glob("arch-{:}-seed-*.pth".format(arch_index)))) | ||||
|             ] += 1 | ||||
|     print( | ||||
|         "{:} There are {:5d} architectures that have been evaluated ({:} in total).".format( | ||||
|             time_string(), num_evaluated_arch, meta_num_archs | ||||
|         ) | ||||
|     ) | ||||
|     for key in sorted(list(num_seeds.keys())): | ||||
|         print( | ||||
|             "{:} There are {:5d} architectures that are evaluated {:} times.".format( | ||||
|                 time_string(), num_seeds[key], key | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|     dataloader_dict = GET_DataLoaders(6) | ||||
|  | ||||
|     to_save_simply = save_dir / "simplifies" | ||||
|     to_save_allarc = save_dir / "simplifies" / "architectures" | ||||
|     if not to_save_simply.exists(): | ||||
|         to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|     if not to_save_allarc.exists(): | ||||
|         to_save_allarc.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|     assert (save_dir / target_dir) in subdir2archs, "can not find {:}".format( | ||||
|         target_dir | ||||
|     ) | ||||
|     arch2infos, datasets = {}, ( | ||||
|         "cifar10-valid", | ||||
|         "cifar10", | ||||
|         "cifar100", | ||||
|         "ImageNet16-120", | ||||
|     ) | ||||
|     evaluated_indexes = set() | ||||
|     target_directory = save_dir / target_dir | ||||
|     target_less_dir = save_dir / "{:}-LESS".format(target_dir) | ||||
|     arch_indexes = subdir2archs[target_directory] | ||||
|     num_seeds = defaultdict(lambda: 0) | ||||
|     end_time = time.time() | ||||
|     arch_time = AverageMeter() | ||||
|     for idx, arch_index in enumerate(arch_indexes): | ||||
|         checkpoints = list( | ||||
|             target_directory.glob("arch-{:}-seed-*.pth".format(arch_index)) | ||||
|         ) | ||||
|         ckps_less = list(target_less_dir.glob("arch-{:}-seed-*.pth".format(arch_index))) | ||||
|         # create the arch info for each architecture | ||||
|         try: | ||||
|             arch_info_full = account_one_arch( | ||||
|                 arch_index, | ||||
|                 meta_archs[int(arch_index)], | ||||
|                 checkpoints, | ||||
|                 datasets, | ||||
|                 dataloader_dict, | ||||
|             ) | ||||
|             arch_info_less = account_one_arch( | ||||
|                 arch_index, | ||||
|                 meta_archs[int(arch_index)], | ||||
|                 ckps_less, | ||||
|                 ["cifar10-valid"], | ||||
|                 dataloader_dict, | ||||
|             ) | ||||
|             num_seeds[len(checkpoints)] += 1 | ||||
|         except: | ||||
|             print("Loading {:} failed, : {:}".format(arch_index, checkpoints)) | ||||
|             continue | ||||
|         assert ( | ||||
|             int(arch_index) not in evaluated_indexes | ||||
|         ), "conflict arch-index : {:}".format(arch_index) | ||||
|         assert ( | ||||
|             0 <= int(arch_index) < len(meta_archs) | ||||
|         ), "invalid arch-index {:} (not found in meta_archs)".format(arch_index) | ||||
|         arch_info = {"full": arch_info_full, "less": arch_info_less} | ||||
|         evaluated_indexes.add(int(arch_index)) | ||||
|         arch2infos[int(arch_index)] = arch_info | ||||
|         torch.save( | ||||
|             {"full": arch_info_full.state_dict(), "less": arch_info_less.state_dict()}, | ||||
|             to_save_allarc / "{:}-FULL.pth".format(arch_index), | ||||
|         ) | ||||
|         arch_info["full"].clear_params() | ||||
|         arch_info["less"].clear_params() | ||||
|         torch.save( | ||||
|             {"full": arch_info_full.state_dict(), "less": arch_info_less.state_dict()}, | ||||
|             to_save_allarc / "{:}-SIMPLE.pth".format(arch_index), | ||||
|         ) | ||||
|         # measure elapsed time | ||||
|         arch_time.update(time.time() - end_time) | ||||
|         end_time = time.time() | ||||
|         need_time = "{:}".format( | ||||
|             convert_secs2time(arch_time.avg * (len(arch_indexes) - idx - 1), True) | ||||
|         ) | ||||
|         print( | ||||
|             "{:} {:} [{:03d}/{:03d}] : {:} still need {:}".format( | ||||
|                 time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time | ||||
|             ) | ||||
|         ) | ||||
|     # measure time | ||||
|     xstrs = [ | ||||
|         "{:}:{:03d}".format(key, num_seeds[key]) | ||||
|         for key in sorted(list(num_seeds.keys())) | ||||
|     ] | ||||
|     print("{:} {:} done : {:}".format(time_string(), target_dir, xstrs)) | ||||
|     final_infos = { | ||||
|         "meta_archs": meta_archs, | ||||
|         "total_archs": meta_num_archs, | ||||
|         "basestr": basestr, | ||||
|         "arch2infos": arch2infos, | ||||
|         "evaluated_indexes": evaluated_indexes, | ||||
|     } | ||||
|     save_file_name = to_save_simply / "{:}.pth".format(target_dir) | ||||
|     torch.save(final_infos, save_file_name) | ||||
|     print( | ||||
|         "Save {:} / {:} architecture results into {:}.".format( | ||||
|             len(evaluated_indexes), meta_num_archs, save_file_name | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def merge_all(save_dir, meta_file, basestr): | ||||
|     meta_infos = torch.load(meta_file, map_location="cpu") | ||||
|     meta_archs = meta_infos["archs"] | ||||
|     meta_num_archs = meta_infos["total"] | ||||
|     meta_max_node = meta_infos["max_node"] | ||||
|     assert meta_num_archs == len( | ||||
|         meta_archs | ||||
|     ), "invalid number of archs : {:} vs {:}".format(meta_num_archs, len(meta_archs)) | ||||
|  | ||||
|     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | ||||
|     print( | ||||
|         "{:} find {:} directories used to save checkpoints".format( | ||||
|             time_string(), len(sub_model_dirs) | ||||
|         ) | ||||
|     ) | ||||
|     for index, sub_dir in enumerate(sub_model_dirs): | ||||
|         arch_info_files = sorted(list(sub_dir.glob("arch-*-seed-*.pth"))) | ||||
|         print( | ||||
|             "The {:02d}/{:02d}-th directory : {:} : {:} runs.".format( | ||||
|                 index, len(sub_model_dirs), sub_dir, len(arch_info_files) | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|     arch2infos, evaluated_indexes = dict(), set() | ||||
|     for IDX, sub_dir in enumerate(sub_model_dirs): | ||||
|         ckp_path = sub_dir.parent / "simplifies" / "{:}.pth".format(sub_dir.name) | ||||
|         if ckp_path.exists(): | ||||
|             sub_ckps = torch.load(ckp_path, map_location="cpu") | ||||
|             assert ( | ||||
|                 sub_ckps["total_archs"] == meta_num_archs | ||||
|                 and sub_ckps["basestr"] == basestr | ||||
|             ) | ||||
|             xarch2infos = sub_ckps["arch2infos"] | ||||
|             xevalindexs = sub_ckps["evaluated_indexes"] | ||||
|             for eval_index in xevalindexs: | ||||
|                 assert ( | ||||
|                     eval_index not in evaluated_indexes and eval_index not in arch2infos | ||||
|                 ) | ||||
|                 # arch2infos[eval_index] = xarch2infos[eval_index].state_dict() | ||||
|                 arch2infos[eval_index] = { | ||||
|                     "full": xarch2infos[eval_index]["full"].state_dict(), | ||||
|                     "less": xarch2infos[eval_index]["less"].state_dict(), | ||||
|                 } | ||||
|                 evaluated_indexes.add(eval_index) | ||||
|             print( | ||||
|                 "{:} [{:03d}/{:03d}] merge data from {:} with {:} models.".format( | ||||
|                     time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs) | ||||
|                 ) | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("Can not find {:}".format(ckp_path)) | ||||
|             # print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path)) | ||||
|  | ||||
|     evaluated_indexes = sorted(list(evaluated_indexes)) | ||||
|     print( | ||||
|         "Finally, there are {:} architectures that have been trained and evaluated.".format( | ||||
|             len(evaluated_indexes) | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|     to_save_simply = save_dir / "simplifies" | ||||
|     if not to_save_simply.exists(): | ||||
|         to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|     final_infos = { | ||||
|         "meta_archs": meta_archs, | ||||
|         "total_archs": meta_num_archs, | ||||
|         "arch2infos": arch2infos, | ||||
|         "evaluated_indexes": evaluated_indexes, | ||||
|     } | ||||
|     save_file_name = to_save_simply / "{:}-final-infos.pth".format(basestr) | ||||
|     torch.save(final_infos, save_file_name) | ||||
|     print( | ||||
|         "Save {:} / {:} architecture results into {:}.".format( | ||||
|             len(evaluated_indexes), meta_num_archs, save_file_name | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description="NAS-BENCH-201", | ||||
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--mode", | ||||
|         type=str, | ||||
|         choices=["cal", "merge"], | ||||
|         help="The running mode for this script.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--base_save_dir", | ||||
|         type=str, | ||||
|         default="./output/NAS-BENCH-201-4", | ||||
|         help="The base-name of folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument("--target_dir", type=str, help="The target directory.") | ||||
|     parser.add_argument( | ||||
|         "--max_node", type=int, default=4, help="The maximum node in a cell." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--channel", type=int, default=16, help="The number of channels." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--num_cells", type=int, default=5, help="The number of cells in one stage." | ||||
|     ) | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     save_dir = Path(args.base_save_dir) | ||||
|     meta_path = save_dir / "meta-node-{:}.pth".format(args.max_node) | ||||
|     assert save_dir.exists(), "invalid save dir path : {:}".format(save_dir) | ||||
|     assert meta_path.exists(), "invalid saved meta path : {:}".format(meta_path) | ||||
|     print( | ||||
|         "start the statistics of our nas-benchmark from {:} using {:}.".format( | ||||
|             save_dir, args.target_dir | ||||
|         ) | ||||
|     ) | ||||
|     basestr = "C{:}-N{:}".format(args.channel, args.num_cells) | ||||
|  | ||||
|     if args.mode == "cal": | ||||
|         simplify(save_dir, meta_path, basestr, args.target_dir) | ||||
|     elif args.mode == "merge": | ||||
|         merge_all(save_dir, meta_path, basestr) | ||||
|     else: | ||||
|         raise ValueError("invalid mode : {:}".format(args.mode)) | ||||
							
								
								
									
										197
									
								
								AutoDL-Projects/exps/NAS-Bench-201/test-correlation.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										197
									
								
								AutoDL-Projects/exps/NAS-Bench-201/test-correlation.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,197 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ######################################################## | ||||
| # python exps/NAS-Bench-201/test-correlation.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth | ||||
| ######################################################## | ||||
| import sys, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| from tqdm import tqdm | ||||
| import torch | ||||
| from pathlib import Path | ||||
|  | ||||
| from xautodl.log_utils import time_string | ||||
| from xautodl.models import CellStructure | ||||
| from nas_201_api import NASBench201API as API | ||||
|  | ||||
|  | ||||
| def check_unique_arch(meta_file): | ||||
|     api = API(str(meta_file)) | ||||
|     arch_strs = deepcopy(api.meta_archs) | ||||
|     xarchs = [CellStructure.str2structure(x) for x in arch_strs] | ||||
|  | ||||
|     def get_unique_matrix(archs, consider_zero): | ||||
|         UniquStrs = [arch.to_unique_str(consider_zero) for arch in archs] | ||||
|         print( | ||||
|             "{:} create unique-string ({:}/{:}) done".format( | ||||
|                 time_string(), len(set(UniquStrs)), len(UniquStrs) | ||||
|             ) | ||||
|         ) | ||||
|         Unique2Index = dict() | ||||
|         for index, xstr in enumerate(UniquStrs): | ||||
|             if xstr not in Unique2Index: | ||||
|                 Unique2Index[xstr] = list() | ||||
|             Unique2Index[xstr].append(index) | ||||
|         sm_matrix = torch.eye(len(archs)).bool() | ||||
|         for _, xlist in Unique2Index.items(): | ||||
|             for i in xlist: | ||||
|                 for j in xlist: | ||||
|                     sm_matrix[i, j] = True | ||||
|         unique_ids, unique_num = [-1 for _ in archs], 0 | ||||
|         for i in range(len(unique_ids)): | ||||
|             if unique_ids[i] > -1: | ||||
|                 continue | ||||
|             neighbours = sm_matrix[i].nonzero().view(-1).tolist() | ||||
|             for nghb in neighbours: | ||||
|                 assert unique_ids[nghb] == -1, "impossible" | ||||
|                 unique_ids[nghb] = unique_num | ||||
|             unique_num += 1 | ||||
|         return sm_matrix, unique_ids, unique_num | ||||
|  | ||||
|     print( | ||||
|         "There are {:} valid-archs".format(sum(arch.check_valid() for arch in xarchs)) | ||||
|     ) | ||||
|     sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, None) | ||||
|     print( | ||||
|         "{:} There are {:} unique architectures (considering nothing).".format( | ||||
|             time_string(), unique_num | ||||
|         ) | ||||
|     ) | ||||
|     sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, False) | ||||
|     print( | ||||
|         "{:} There are {:} unique architectures (not considering zero).".format( | ||||
|             time_string(), unique_num | ||||
|         ) | ||||
|     ) | ||||
|     sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, True) | ||||
|     print( | ||||
|         "{:} There are {:} unique architectures (considering zero).".format( | ||||
|             time_string(), unique_num | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def check_cor_for_bandit( | ||||
|     meta_file, test_epoch, use_less_or_not, is_rand=True, need_print=False | ||||
| ): | ||||
|     if isinstance(meta_file, API): | ||||
|         api = meta_file | ||||
|     else: | ||||
|         api = API(str(meta_file)) | ||||
|     cifar10_currs = [] | ||||
|     cifar10_valid = [] | ||||
|     cifar10_test = [] | ||||
|     cifar100_valid = [] | ||||
|     cifar100_test = [] | ||||
|     imagenet_test = [] | ||||
|     imagenet_valid = [] | ||||
|     for idx, arch in enumerate(api): | ||||
|         results = api.get_more_info( | ||||
|             idx, "cifar10-valid", test_epoch - 1, use_less_or_not, is_rand | ||||
|         ) | ||||
|         cifar10_currs.append(results["valid-accuracy"]) | ||||
|         # --->>>>> | ||||
|         results = api.get_more_info(idx, "cifar10-valid", None, False, is_rand) | ||||
|         cifar10_valid.append(results["valid-accuracy"]) | ||||
|         results = api.get_more_info(idx, "cifar10", None, False, is_rand) | ||||
|         cifar10_test.append(results["test-accuracy"]) | ||||
|         results = api.get_more_info(idx, "cifar100", None, False, is_rand) | ||||
|         cifar100_test.append(results["test-accuracy"]) | ||||
|         cifar100_valid.append(results["valid-accuracy"]) | ||||
|         results = api.get_more_info(idx, "ImageNet16-120", None, False, is_rand) | ||||
|         imagenet_test.append(results["test-accuracy"]) | ||||
|         imagenet_valid.append(results["valid-accuracy"]) | ||||
|  | ||||
|     def get_cor(A, B): | ||||
|         return float(np.corrcoef(A, B)[0, 1]) | ||||
|  | ||||
|     cors = [] | ||||
|     for basestr, xlist in zip( | ||||
|         ["C-010-V", "C-010-T", "C-100-V", "C-100-T", "I16-V", "I16-T"], | ||||
|         [ | ||||
|             cifar10_valid, | ||||
|             cifar10_test, | ||||
|             cifar100_valid, | ||||
|             cifar100_test, | ||||
|             imagenet_valid, | ||||
|             imagenet_test, | ||||
|         ], | ||||
|     ): | ||||
|         correlation = get_cor(cifar10_currs, xlist) | ||||
|         if need_print: | ||||
|             print( | ||||
|                 "With {:3d}/{:}-epochs-training, the correlation between cifar10-valid and {:} is : {:}".format( | ||||
|                     test_epoch, | ||||
|                     "012" if use_less_or_not else "200", | ||||
|                     basestr, | ||||
|                     correlation, | ||||
|                 ) | ||||
|             ) | ||||
|         cors.append(correlation) | ||||
|         # print ('With {:3d}/200-epochs-training, the correlation between cifar10-valid and {:} is : {:}'.format(test_epoch, basestr, get_cor(cifar10_valid_200, xlist))) | ||||
|         # print('-'*200) | ||||
|     # print('*'*230) | ||||
|     return cors | ||||
|  | ||||
|  | ||||
| def check_cor_for_bandit_v2(meta_file, test_epoch, use_less_or_not, is_rand): | ||||
|     corrs = [] | ||||
|     for i in tqdm(range(100)): | ||||
|         x = check_cor_for_bandit(meta_file, test_epoch, use_less_or_not, is_rand, False) | ||||
|         corrs.append(x) | ||||
|     # xstrs = ['CIFAR-010', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T'] | ||||
|     xstrs = ["C-010-V", "C-010-T", "C-100-V", "C-100-T", "I16-V", "I16-T"] | ||||
|     correlations = np.array(corrs) | ||||
|     print( | ||||
|         "------>>>>>>>> {:03d}/{:} >>>>>>>> ------".format( | ||||
|             test_epoch, "012" if use_less_or_not else "200" | ||||
|         ) | ||||
|     ) | ||||
|     for idx, xstr in enumerate(xstrs): | ||||
|         print( | ||||
|             "{:8s} ::: mean={:.4f}, std={:.4f} :: {:.4f}\\pm{:.4f}".format( | ||||
|                 xstr, | ||||
|                 correlations[:, idx].mean(), | ||||
|                 correlations[:, idx].std(), | ||||
|                 correlations[:, idx].mean(), | ||||
|                 correlations[:, idx].std(), | ||||
|             ) | ||||
|         ) | ||||
|     print("") | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="./output/search-cell-nas-bench-201/visuals", | ||||
|         help="The base-name of folder to save checkpoints and log.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--api_path", | ||||
|         type=str, | ||||
|         default=None, | ||||
|         help="The path to the NAS-Bench-201 benchmark file.", | ||||
|     ) | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     vis_save_dir = Path(args.save_dir) | ||||
|     vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     meta_file = Path(args.api_path) | ||||
|     assert meta_file.exists(), "invalid path for api : {:}".format(meta_file) | ||||
|  | ||||
|     # check_unique_arch(meta_file) | ||||
|     api = API(str(meta_file)) | ||||
|     # for iepoch in [11, 25, 50, 100, 150, 175, 200]: | ||||
|     #  check_cor_for_bandit(api,  6, iepoch) | ||||
|     #  check_cor_for_bandit(api, 12, iepoch) | ||||
|     check_cor_for_bandit_v2(api, 6, True, True) | ||||
|     check_cor_for_bandit_v2(api, 12, True, True) | ||||
|     check_cor_for_bandit_v2(api, 12, False, True) | ||||
|     check_cor_for_bandit_v2(api, 24, False, True) | ||||
|     check_cor_for_bandit_v2(api, 100, False, True) | ||||
|     check_cor_for_bandit_v2(api, 150, False, True) | ||||
|     check_cor_for_bandit_v2(api, 175, False, True) | ||||
|     check_cor_for_bandit_v2(api, 200, False, True) | ||||
|     print("----") | ||||
							
								
								
									
										1259
									
								
								AutoDL-Projects/exps/NAS-Bench-201/visualize.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1259
									
								
								AutoDL-Projects/exps/NAS-Bench-201/visualize.py
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
		Reference in New Issue
	
	Block a user