add autodl
This commit is contained in:
		
							
								
								
									
										117
									
								
								AutoDL-Projects/xautodl/models/CifarDenseNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										117
									
								
								AutoDL-Projects/xautodl/models/CifarDenseNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,117 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class Bottleneck(nn.Module): | ||||
|     def __init__(self, nChannels, growthRate): | ||||
|         super(Bottleneck, self).__init__() | ||||
|         interChannels = 4 * growthRate | ||||
|         self.bn1 = nn.BatchNorm2d(nChannels) | ||||
|         self.conv1 = nn.Conv2d(nChannels, interChannels, kernel_size=1, bias=False) | ||||
|         self.bn2 = nn.BatchNorm2d(interChannels) | ||||
|         self.conv2 = nn.Conv2d( | ||||
|             interChannels, growthRate, kernel_size=3, padding=1, bias=False | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         out = self.conv1(F.relu(self.bn1(x))) | ||||
|         out = self.conv2(F.relu(self.bn2(out))) | ||||
|         out = torch.cat((x, out), 1) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class SingleLayer(nn.Module): | ||||
|     def __init__(self, nChannels, growthRate): | ||||
|         super(SingleLayer, self).__init__() | ||||
|         self.bn1 = nn.BatchNorm2d(nChannels) | ||||
|         self.conv1 = nn.Conv2d( | ||||
|             nChannels, growthRate, kernel_size=3, padding=1, bias=False | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         out = self.conv1(F.relu(self.bn1(x))) | ||||
|         out = torch.cat((x, out), 1) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class Transition(nn.Module): | ||||
|     def __init__(self, nChannels, nOutChannels): | ||||
|         super(Transition, self).__init__() | ||||
|         self.bn1 = nn.BatchNorm2d(nChannels) | ||||
|         self.conv1 = nn.Conv2d(nChannels, nOutChannels, kernel_size=1, bias=False) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         out = self.conv1(F.relu(self.bn1(x))) | ||||
|         out = F.avg_pool2d(out, 2) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class DenseNet(nn.Module): | ||||
|     def __init__(self, growthRate, depth, reduction, nClasses, bottleneck): | ||||
|         super(DenseNet, self).__init__() | ||||
|  | ||||
|         if bottleneck: | ||||
|             nDenseBlocks = int((depth - 4) / 6) | ||||
|         else: | ||||
|             nDenseBlocks = int((depth - 4) / 3) | ||||
|  | ||||
|         self.message = "CifarDenseNet : block : {:}, depth : {:}, reduction : {:}, growth-rate = {:}, class = {:}".format( | ||||
|             "bottleneck" if bottleneck else "basic", | ||||
|             depth, | ||||
|             reduction, | ||||
|             growthRate, | ||||
|             nClasses, | ||||
|         ) | ||||
|  | ||||
|         nChannels = 2 * growthRate | ||||
|         self.conv1 = nn.Conv2d(3, nChannels, kernel_size=3, padding=1, bias=False) | ||||
|  | ||||
|         self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck) | ||||
|         nChannels += nDenseBlocks * growthRate | ||||
|         nOutChannels = int(math.floor(nChannels * reduction)) | ||||
|         self.trans1 = Transition(nChannels, nOutChannels) | ||||
|  | ||||
|         nChannels = nOutChannels | ||||
|         self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck) | ||||
|         nChannels += nDenseBlocks * growthRate | ||||
|         nOutChannels = int(math.floor(nChannels * reduction)) | ||||
|         self.trans2 = Transition(nChannels, nOutChannels) | ||||
|  | ||||
|         nChannels = nOutChannels | ||||
|         self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck) | ||||
|         nChannels += nDenseBlocks * growthRate | ||||
|  | ||||
|         self.act = nn.Sequential( | ||||
|             nn.BatchNorm2d(nChannels), nn.ReLU(inplace=True), nn.AvgPool2d(8) | ||||
|         ) | ||||
|         self.fc = nn.Linear(nChannels, nClasses) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck): | ||||
|         layers = [] | ||||
|         for i in range(int(nDenseBlocks)): | ||||
|             if bottleneck: | ||||
|                 layers.append(Bottleneck(nChannels, growthRate)) | ||||
|             else: | ||||
|                 layers.append(SingleLayer(nChannels, growthRate)) | ||||
|             nChannels += growthRate | ||||
|         return nn.Sequential(*layers) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         out = self.conv1(inputs) | ||||
|         out = self.trans1(self.dense1(out)) | ||||
|         out = self.trans2(self.dense2(out)) | ||||
|         out = self.dense3(out) | ||||
|         features = self.act(out) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         out = self.fc(features) | ||||
|         return features, out | ||||
							
								
								
									
										180
									
								
								AutoDL-Projects/xautodl/models/CifarResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										180
									
								
								AutoDL-Projects/xautodl/models/CifarResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,180 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .initialization import initialize_resnet | ||||
| from .SharedUtils import additive_func | ||||
|  | ||||
|  | ||||
| class Downsample(nn.Module): | ||||
|     def __init__(self, nIn, nOut, stride): | ||||
|         super(Downsample, self).__init__() | ||||
|         assert stride == 2 and nOut == 2 * nIn, "stride:{} IO:{},{}".format( | ||||
|             stride, nIn, nOut | ||||
|         ) | ||||
|         self.in_dim = nIn | ||||
|         self.out_dim = nOut | ||||
|         self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         self.conv = nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, padding=0, bias=False) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.avg(x) | ||||
|         out = self.conv(x) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     def __init__(self, nIn, nOut, kernel, stride, padding, bias, relu): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, bias=bias | ||||
|         ) | ||||
|         self.bn = nn.BatchNorm2d(nOut) | ||||
|         if relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|         self.out_dim = nOut | ||||
|         self.num_conv = 1 | ||||
|  | ||||
|     def forward(self, x): | ||||
|         conv = self.conv(x) | ||||
|         bn = self.bn(conv) | ||||
|         if self.relu: | ||||
|             return self.relu(bn) | ||||
|         else: | ||||
|             return bn | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     expansion = 1 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, True) | ||||
|         self.conv_b = ConvBNReLU(planes, planes, 3, 1, 1, False, False) | ||||
|         if stride == 2: | ||||
|             self.downsample = Downsample(inplanes, planes, stride) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, False) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|         self.num_conv = 2 | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, basicblock) | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, True) | ||||
|         self.conv_3x3 = ConvBNReLU(planes, planes, 3, stride, 1, False, True) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             planes, planes * self.expansion, 1, 1, 0, False, False | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = Downsample(inplanes, planes * self.expansion, stride) | ||||
|         elif inplanes != planes * self.expansion: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, planes * self.expansion, 1, 1, 0, False, False | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes * self.expansion | ||||
|         self.num_conv = 3 | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, bottleneck) | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class CifarResNet(nn.Module): | ||||
|     def __init__(self, block_name, depth, num_classes, zero_init_residual): | ||||
|         super(CifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|  | ||||
|         self.message = "CifarResNet : Block : {:}, Depth : {:}, Layers for each block : {:}".format( | ||||
|             block_name, depth, layer_blocks | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.channels = [16] | ||||
|         self.layers = nn.ModuleList([ConvBNReLU(3, 16, 3, 1, 1, False, True)]) | ||||
|         for stage in range(3): | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 16 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iC, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|         assert ( | ||||
|             sum(x.num_conv for x in self.layers) + 1 == depth | ||||
|         ), "invalid depth check {:} vs {:}".format( | ||||
|             sum(x.num_conv for x in self.layers) + 1, depth | ||||
|         ) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|         if zero_init_residual: | ||||
|             for m in self.modules(): | ||||
|                 if isinstance(m, ResNetBasicblock): | ||||
|                     nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|                 elif isinstance(m, ResNetBottleneck): | ||||
|                     nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										115
									
								
								AutoDL-Projects/xautodl/models/CifarWideResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										115
									
								
								AutoDL-Projects/xautodl/models/CifarWideResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,115 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class WideBasicblock(nn.Module): | ||||
|     def __init__(self, inplanes, planes, stride, dropout=False): | ||||
|         super(WideBasicblock, self).__init__() | ||||
|  | ||||
|         self.bn_a = nn.BatchNorm2d(inplanes) | ||||
|         self.conv_a = nn.Conv2d( | ||||
|             inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False | ||||
|         ) | ||||
|  | ||||
|         self.bn_b = nn.BatchNorm2d(planes) | ||||
|         if dropout: | ||||
|             self.dropout = nn.Dropout2d(p=0.5, inplace=True) | ||||
|         else: | ||||
|             self.dropout = None | ||||
|         self.conv_b = nn.Conv2d( | ||||
|             planes, planes, kernel_size=3, stride=1, padding=1, bias=False | ||||
|         ) | ||||
|  | ||||
|         if inplanes != planes: | ||||
|             self.downsample = nn.Conv2d( | ||||
|                 inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|  | ||||
|     def forward(self, x): | ||||
|  | ||||
|         basicblock = self.bn_a(x) | ||||
|         basicblock = F.relu(basicblock) | ||||
|         basicblock = self.conv_a(basicblock) | ||||
|  | ||||
|         basicblock = self.bn_b(basicblock) | ||||
|         basicblock = F.relu(basicblock) | ||||
|         if self.dropout is not None: | ||||
|             basicblock = self.dropout(basicblock) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             x = self.downsample(x) | ||||
|  | ||||
|         return x + basicblock | ||||
|  | ||||
|  | ||||
| class CifarWideResNet(nn.Module): | ||||
|     """ | ||||
|     ResNet optimized for the Cifar dataset, as specified in | ||||
|     https://arxiv.org/abs/1512.03385.pdf | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, depth, widen_factor, num_classes, dropout): | ||||
|         super(CifarWideResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         assert (depth - 4) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|         layer_blocks = (depth - 4) // 6 | ||||
|         print( | ||||
|             "CifarPreResNet : Depth : {} , Layers for each block : {}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|         self.num_classes = num_classes | ||||
|         self.dropout = dropout | ||||
|         self.conv_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) | ||||
|  | ||||
|         self.message = "Wide ResNet : depth={:}, widen_factor={:}, class={:}".format( | ||||
|             depth, widen_factor, num_classes | ||||
|         ) | ||||
|         self.inplanes = 16 | ||||
|         self.stage_1 = self._make_layer( | ||||
|             WideBasicblock, 16 * widen_factor, layer_blocks, 1 | ||||
|         ) | ||||
|         self.stage_2 = self._make_layer( | ||||
|             WideBasicblock, 32 * widen_factor, layer_blocks, 2 | ||||
|         ) | ||||
|         self.stage_3 = self._make_layer( | ||||
|             WideBasicblock, 64 * widen_factor, layer_blocks, 2 | ||||
|         ) | ||||
|         self.lastact = nn.Sequential( | ||||
|             nn.BatchNorm2d(64 * widen_factor), nn.ReLU(inplace=True) | ||||
|         ) | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(64 * widen_factor, num_classes) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def _make_layer(self, block, planes, blocks, stride): | ||||
|  | ||||
|         layers = [] | ||||
|         layers.append(block(self.inplanes, planes, stride, self.dropout)) | ||||
|         self.inplanes = planes | ||||
|         for i in range(1, blocks): | ||||
|             layers.append(block(self.inplanes, planes, 1, self.dropout)) | ||||
|  | ||||
|         return nn.Sequential(*layers) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.conv_3x3(x) | ||||
|         x = self.stage_1(x) | ||||
|         x = self.stage_2(x) | ||||
|         x = self.stage_3(x) | ||||
|         x = self.lastact(x) | ||||
|         x = self.avgpool(x) | ||||
|         features = x.view(x.size(0), -1) | ||||
|         outs = self.classifier(features) | ||||
|         return features, outs | ||||
							
								
								
									
										117
									
								
								AutoDL-Projects/xautodl/models/ImageNet_MobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										117
									
								
								AutoDL-Projects/xautodl/models/ImageNet_MobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,117 @@ | ||||
| # MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018 | ||||
| from torch import nn | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         padding = (kernel_size - 1) // 2 | ||||
|         self.conv = nn.Conv2d( | ||||
|             in_planes, | ||||
|             out_planes, | ||||
|             kernel_size, | ||||
|             stride, | ||||
|             padding, | ||||
|             groups=groups, | ||||
|             bias=False, | ||||
|         ) | ||||
|         self.bn = nn.BatchNorm2d(out_planes) | ||||
|         self.relu = nn.ReLU6(inplace=True) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         out = self.conv(x) | ||||
|         out = self.bn(out) | ||||
|         out = self.relu(out) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class InvertedResidual(nn.Module): | ||||
|     def __init__(self, inp, oup, stride, expand_ratio): | ||||
|         super(InvertedResidual, self).__init__() | ||||
|         self.stride = stride | ||||
|         assert stride in [1, 2] | ||||
|  | ||||
|         hidden_dim = int(round(inp * expand_ratio)) | ||||
|         self.use_res_connect = self.stride == 1 and inp == oup | ||||
|  | ||||
|         layers = [] | ||||
|         if expand_ratio != 1: | ||||
|             # pw | ||||
|             layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) | ||||
|         layers.extend( | ||||
|             [ | ||||
|                 # dw | ||||
|                 ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), | ||||
|                 # pw-linear | ||||
|                 nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | ||||
|                 nn.BatchNorm2d(oup), | ||||
|             ] | ||||
|         ) | ||||
|         self.conv = nn.Sequential(*layers) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         if self.use_res_connect: | ||||
|             return x + self.conv(x) | ||||
|         else: | ||||
|             return self.conv(x) | ||||
|  | ||||
|  | ||||
| class MobileNetV2(nn.Module): | ||||
|     def __init__( | ||||
|         self, num_classes, width_mult, input_channel, last_channel, block_name, dropout | ||||
|     ): | ||||
|         super(MobileNetV2, self).__init__() | ||||
|         if block_name == "InvertedResidual": | ||||
|             block = InvertedResidual | ||||
|         else: | ||||
|             raise ValueError("invalid block name : {:}".format(block_name)) | ||||
|         inverted_residual_setting = [ | ||||
|             # t, c,  n, s | ||||
|             [1, 16, 1, 1], | ||||
|             [6, 24, 2, 2], | ||||
|             [6, 32, 3, 2], | ||||
|             [6, 64, 4, 2], | ||||
|             [6, 96, 3, 1], | ||||
|             [6, 160, 3, 2], | ||||
|             [6, 320, 1, 1], | ||||
|         ] | ||||
|  | ||||
|         # building first layer | ||||
|         input_channel = int(input_channel * width_mult) | ||||
|         self.last_channel = int(last_channel * max(1.0, width_mult)) | ||||
|         features = [ConvBNReLU(3, input_channel, stride=2)] | ||||
|         # building inverted residual blocks | ||||
|         for t, c, n, s in inverted_residual_setting: | ||||
|             output_channel = int(c * width_mult) | ||||
|             for i in range(n): | ||||
|                 stride = s if i == 0 else 1 | ||||
|                 features.append( | ||||
|                     block(input_channel, output_channel, stride, expand_ratio=t) | ||||
|                 ) | ||||
|                 input_channel = output_channel | ||||
|         # building last several layers | ||||
|         features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) | ||||
|         # make it nn.Sequential | ||||
|         self.features = nn.Sequential(*features) | ||||
|  | ||||
|         # building classifier | ||||
|         self.classifier = nn.Sequential( | ||||
|             nn.Dropout(dropout), | ||||
|             nn.Linear(self.last_channel, num_classes), | ||||
|         ) | ||||
|         self.message = "MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}".format( | ||||
|             width_mult, input_channel, last_channel, block_name, dropout | ||||
|         ) | ||||
|  | ||||
|         # weight initialization | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         features = self.features(inputs) | ||||
|         vectors = features.mean([2, 3]) | ||||
|         predicts = self.classifier(vectors) | ||||
|         return features, predicts | ||||
							
								
								
									
										217
									
								
								AutoDL-Projects/xautodl/models/ImageNet_ResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										217
									
								
								AutoDL-Projects/xautodl/models/ImageNet_ResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,217 @@ | ||||
| # Deep Residual Learning for Image Recognition, CVPR 2016 | ||||
| import torch.nn as nn | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| def conv3x3(in_planes, out_planes, stride=1, groups=1): | ||||
|     return nn.Conv2d( | ||||
|         in_planes, | ||||
|         out_planes, | ||||
|         kernel_size=3, | ||||
|         stride=stride, | ||||
|         padding=1, | ||||
|         groups=groups, | ||||
|         bias=False, | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def conv1x1(in_planes, out_planes, stride=1): | ||||
|     return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | ||||
|  | ||||
|  | ||||
| class BasicBlock(nn.Module): | ||||
|     expansion = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64 | ||||
|     ): | ||||
|         super(BasicBlock, self).__init__() | ||||
|         if groups != 1 or base_width != 64: | ||||
|             raise ValueError("BasicBlock only supports groups=1 and base_width=64") | ||||
|         # Both self.conv1 and self.downsample layers downsample the input when stride != 1 | ||||
|         self.conv1 = conv3x3(inplanes, planes, stride) | ||||
|         self.bn1 = nn.BatchNorm2d(planes) | ||||
|         self.relu = nn.ReLU(inplace=True) | ||||
|         self.conv2 = conv3x3(planes, planes) | ||||
|         self.bn2 = nn.BatchNorm2d(planes) | ||||
|         self.downsample = downsample | ||||
|         self.stride = stride | ||||
|  | ||||
|     def forward(self, x): | ||||
|         identity = x | ||||
|  | ||||
|         out = self.conv1(x) | ||||
|         out = self.bn1(out) | ||||
|         out = self.relu(out) | ||||
|  | ||||
|         out = self.conv2(out) | ||||
|         out = self.bn2(out) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             identity = self.downsample(x) | ||||
|  | ||||
|         out += identity | ||||
|         out = self.relu(out) | ||||
|  | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class Bottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|  | ||||
|     def __init__( | ||||
|         self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64 | ||||
|     ): | ||||
|         super(Bottleneck, self).__init__() | ||||
|         width = int(planes * (base_width / 64.0)) * groups | ||||
|         # Both self.conv2 and self.downsample layers downsample the input when stride != 1 | ||||
|         self.conv1 = conv1x1(inplanes, width) | ||||
|         self.bn1 = nn.BatchNorm2d(width) | ||||
|         self.conv2 = conv3x3(width, width, stride, groups) | ||||
|         self.bn2 = nn.BatchNorm2d(width) | ||||
|         self.conv3 = conv1x1(width, planes * self.expansion) | ||||
|         self.bn3 = nn.BatchNorm2d(planes * self.expansion) | ||||
|         self.relu = nn.ReLU(inplace=True) | ||||
|         self.downsample = downsample | ||||
|         self.stride = stride | ||||
|  | ||||
|     def forward(self, x): | ||||
|         identity = x | ||||
|  | ||||
|         out = self.conv1(x) | ||||
|         out = self.bn1(out) | ||||
|         out = self.relu(out) | ||||
|  | ||||
|         out = self.conv2(out) | ||||
|         out = self.bn2(out) | ||||
|         out = self.relu(out) | ||||
|  | ||||
|         out = self.conv3(out) | ||||
|         out = self.bn3(out) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             identity = self.downsample(x) | ||||
|  | ||||
|         out += identity | ||||
|         out = self.relu(out) | ||||
|  | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNet(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         block_name, | ||||
|         layers, | ||||
|         deep_stem, | ||||
|         num_classes, | ||||
|         zero_init_residual, | ||||
|         groups, | ||||
|         width_per_group, | ||||
|     ): | ||||
|         super(ResNet, self).__init__() | ||||
|  | ||||
|         # planes = [int(width_per_group * groups * 2 ** i) for i in range(4)] | ||||
|         if block_name == "BasicBlock": | ||||
|             block = BasicBlock | ||||
|         elif block_name == "Bottleneck": | ||||
|             block = Bottleneck | ||||
|         else: | ||||
|             raise ValueError("invalid block-name : {:}".format(block_name)) | ||||
|  | ||||
|         if not deep_stem: | ||||
|             self.conv = nn.Sequential( | ||||
|                 nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False), | ||||
|                 nn.BatchNorm2d(64), | ||||
|                 nn.ReLU(inplace=True), | ||||
|             ) | ||||
|         else: | ||||
|             self.conv = nn.Sequential( | ||||
|                 nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False), | ||||
|                 nn.BatchNorm2d(32), | ||||
|                 nn.ReLU(inplace=True), | ||||
|                 nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False), | ||||
|                 nn.BatchNorm2d(32), | ||||
|                 nn.ReLU(inplace=True), | ||||
|                 nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False), | ||||
|                 nn.BatchNorm2d(64), | ||||
|                 nn.ReLU(inplace=True), | ||||
|             ) | ||||
|         self.inplanes = 64 | ||||
|         self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||||
|         self.layer1 = self._make_layer( | ||||
|             block, 64, layers[0], stride=1, groups=groups, base_width=width_per_group | ||||
|         ) | ||||
|         self.layer2 = self._make_layer( | ||||
|             block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group | ||||
|         ) | ||||
|         self.layer3 = self._make_layer( | ||||
|             block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group | ||||
|         ) | ||||
|         self.layer4 = self._make_layer( | ||||
|             block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group | ||||
|         ) | ||||
|         self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | ||||
|         self.fc = nn.Linear(512 * block.expansion, num_classes) | ||||
|         self.message = ( | ||||
|             "block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}".format( | ||||
|                 block, layers, deep_stem, num_classes | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|         # Zero-initialize the last BN in each residual branch, | ||||
|         # so that the residual branch starts with zeros, and each residual block behaves like an identity. | ||||
|         # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | ||||
|         if zero_init_residual: | ||||
|             for m in self.modules(): | ||||
|                 if isinstance(m, Bottleneck): | ||||
|                     nn.init.constant_(m.bn3.weight, 0) | ||||
|                 elif isinstance(m, BasicBlock): | ||||
|                     nn.init.constant_(m.bn2.weight, 0) | ||||
|  | ||||
|     def _make_layer(self, block, planes, blocks, stride, groups, base_width): | ||||
|         downsample = None | ||||
|         if stride != 1 or self.inplanes != planes * block.expansion: | ||||
|             if stride == 2: | ||||
|                 downsample = nn.Sequential( | ||||
|                     nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||
|                     conv1x1(self.inplanes, planes * block.expansion, 1), | ||||
|                     nn.BatchNorm2d(planes * block.expansion), | ||||
|                 ) | ||||
|             elif stride == 1: | ||||
|                 downsample = nn.Sequential( | ||||
|                     conv1x1(self.inplanes, planes * block.expansion, stride), | ||||
|                     nn.BatchNorm2d(planes * block.expansion), | ||||
|                 ) | ||||
|             else: | ||||
|                 raise ValueError("invalid stride [{:}] for downsample".format(stride)) | ||||
|  | ||||
|         layers = [] | ||||
|         layers.append( | ||||
|             block(self.inplanes, planes, stride, downsample, groups, base_width) | ||||
|         ) | ||||
|         self.inplanes = planes * block.expansion | ||||
|         for _ in range(1, blocks): | ||||
|             layers.append(block(self.inplanes, planes, 1, None, groups, base_width)) | ||||
|  | ||||
|         return nn.Sequential(*layers) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.conv(x) | ||||
|         x = self.maxpool(x) | ||||
|  | ||||
|         x = self.layer1(x) | ||||
|         x = self.layer2(x) | ||||
|         x = self.layer3(x) | ||||
|         x = self.layer4(x) | ||||
|  | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.fc(features) | ||||
|  | ||||
|         return features, logits | ||||
							
								
								
									
										37
									
								
								AutoDL-Projects/xautodl/models/SharedUtils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								AutoDL-Projects/xautodl/models/SharedUtils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,37 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def additive_func(A, B): | ||||
|     assert A.dim() == B.dim() and A.size(0) == B.size(0), "{:} vs {:}".format( | ||||
|         A.size(), B.size() | ||||
|     ) | ||||
|     C = min(A.size(1), B.size(1)) | ||||
|     if A.size(1) == B.size(1): | ||||
|         return A + B | ||||
|     elif A.size(1) < B.size(1): | ||||
|         out = B.clone() | ||||
|         out[:, :C] += A | ||||
|         return out | ||||
|     else: | ||||
|         out = A.clone() | ||||
|         out[:, :C] += B | ||||
|         return out | ||||
|  | ||||
|  | ||||
| def change_key(key, value): | ||||
|     def func(m): | ||||
|         if hasattr(m, key): | ||||
|             setattr(m, key, value) | ||||
|  | ||||
|     return func | ||||
|  | ||||
|  | ||||
| def parse_channel_info(xstring): | ||||
|     blocks = xstring.split(" ") | ||||
|     blocks = [x.split("-") for x in blocks] | ||||
|     blocks = [[int(_) for _ in x] for x in blocks] | ||||
|     return blocks | ||||
							
								
								
									
										326
									
								
								AutoDL-Projects/xautodl/models/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										326
									
								
								AutoDL-Projects/xautodl/models/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,326 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from os import path as osp | ||||
| from typing import List, Text | ||||
| import torch | ||||
|  | ||||
| __all__ = [ | ||||
|     "change_key", | ||||
|     "get_cell_based_tiny_net", | ||||
|     "get_search_spaces", | ||||
|     "get_cifar_models", | ||||
|     "get_imagenet_models", | ||||
|     "obtain_model", | ||||
|     "obtain_search_model", | ||||
|     "load_net_from_checkpoint", | ||||
|     "CellStructure", | ||||
|     "CellArchitectures", | ||||
| ] | ||||
|  | ||||
| # useful modules | ||||
| from xautodl.config_utils import dict2config | ||||
| from .SharedUtils import change_key | ||||
| from .cell_searchs import CellStructure, CellArchitectures | ||||
|  | ||||
|  | ||||
| # Cell-based NAS Models | ||||
| def get_cell_based_tiny_net(config): | ||||
|     if isinstance(config, dict): | ||||
|         config = dict2config(config, None)  # to support the argument being a dict | ||||
|     super_type = getattr(config, "super_type", "basic") | ||||
|     group_names = ["DARTS-V1", "DARTS-V2", "GDAS", "SETN", "ENAS", "RANDOM", "generic"] | ||||
|     if super_type == "basic" and config.name in group_names: | ||||
|         from .cell_searchs import nas201_super_nets as nas_super_nets | ||||
|  | ||||
|         try: | ||||
|             return nas_super_nets[config.name]( | ||||
|                 config.C, | ||||
|                 config.N, | ||||
|                 config.max_nodes, | ||||
|                 config.num_classes, | ||||
|                 config.space, | ||||
|                 config.affine, | ||||
|                 config.track_running_stats, | ||||
|             ) | ||||
|         except: | ||||
|             return nas_super_nets[config.name]( | ||||
|                 config.C, config.N, config.max_nodes, config.num_classes, config.space | ||||
|             ) | ||||
|     elif super_type == "search-shape": | ||||
|         from .shape_searchs import GenericNAS301Model | ||||
|  | ||||
|         genotype = CellStructure.str2structure(config.genotype) | ||||
|         return GenericNAS301Model( | ||||
|             config.candidate_Cs, | ||||
|             config.max_num_Cs, | ||||
|             genotype, | ||||
|             config.num_classes, | ||||
|             config.affine, | ||||
|             config.track_running_stats, | ||||
|         ) | ||||
|     elif super_type == "nasnet-super": | ||||
|         from .cell_searchs import nasnet_super_nets as nas_super_nets | ||||
|  | ||||
|         return nas_super_nets[config.name]( | ||||
|             config.C, | ||||
|             config.N, | ||||
|             config.steps, | ||||
|             config.multiplier, | ||||
|             config.stem_multiplier, | ||||
|             config.num_classes, | ||||
|             config.space, | ||||
|             config.affine, | ||||
|             config.track_running_stats, | ||||
|         ) | ||||
|     elif config.name == "infer.tiny": | ||||
|         from .cell_infers import TinyNetwork | ||||
|  | ||||
|         if hasattr(config, "genotype"): | ||||
|             genotype = config.genotype | ||||
|         elif hasattr(config, "arch_str"): | ||||
|             genotype = CellStructure.str2structure(config.arch_str) | ||||
|         else: | ||||
|             raise ValueError( | ||||
|                 "Can not find genotype from this config : {:}".format(config) | ||||
|             ) | ||||
|         return TinyNetwork(config.C, config.N, genotype, config.num_classes) | ||||
|     elif config.name == "infer.shape.tiny": | ||||
|         from .shape_infers import DynamicShapeTinyNet | ||||
|  | ||||
|         if isinstance(config.channels, str): | ||||
|             channels = tuple([int(x) for x in config.channels.split(":")]) | ||||
|         else: | ||||
|             channels = config.channels | ||||
|         genotype = CellStructure.str2structure(config.genotype) | ||||
|         return DynamicShapeTinyNet(channels, genotype, config.num_classes) | ||||
|     elif config.name == "infer.nasnet-cifar": | ||||
|         from .cell_infers import NASNetonCIFAR | ||||
|  | ||||
|         raise NotImplementedError | ||||
|     else: | ||||
|         raise ValueError("invalid network name : {:}".format(config.name)) | ||||
|  | ||||
|  | ||||
| # obtain the search space, i.e., a dict mapping the operation name into a python-function for this op | ||||
| def get_search_spaces(xtype, name) -> List[Text]: | ||||
|     if xtype == "cell" or xtype == "tss":  # The topology search space. | ||||
|         from .cell_operations import SearchSpaceNames | ||||
|  | ||||
|         assert name in SearchSpaceNames, "invalid name [{:}] in {:}".format( | ||||
|             name, SearchSpaceNames.keys() | ||||
|         ) | ||||
|         return SearchSpaceNames[name] | ||||
|     elif xtype == "sss":  # The size search space. | ||||
|         if name in ["nats-bench", "nats-bench-size"]: | ||||
|             return {"candidates": [8, 16, 24, 32, 40, 48, 56, 64], "numbers": 5} | ||||
|         else: | ||||
|             raise ValueError("Invalid name : {:}".format(name)) | ||||
|     else: | ||||
|         raise ValueError("invalid search-space type is {:}".format(xtype)) | ||||
|  | ||||
|  | ||||
| def get_cifar_models(config, extra_path=None): | ||||
|     super_type = getattr(config, "super_type", "basic") | ||||
|     if super_type == "basic": | ||||
|         from .CifarResNet import CifarResNet | ||||
|         from .CifarDenseNet import DenseNet | ||||
|         from .CifarWideResNet import CifarWideResNet | ||||
|  | ||||
|         if config.arch == "resnet": | ||||
|             return CifarResNet( | ||||
|                 config.module, config.depth, config.class_num, config.zero_init_residual | ||||
|             ) | ||||
|         elif config.arch == "densenet": | ||||
|             return DenseNet( | ||||
|                 config.growthRate, | ||||
|                 config.depth, | ||||
|                 config.reduction, | ||||
|                 config.class_num, | ||||
|                 config.bottleneck, | ||||
|             ) | ||||
|         elif config.arch == "wideresnet": | ||||
|             return CifarWideResNet( | ||||
|                 config.depth, config.wide_factor, config.class_num, config.dropout | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("invalid module type : {:}".format(config.arch)) | ||||
|     elif super_type.startswith("infer"): | ||||
|         from .shape_infers import InferWidthCifarResNet | ||||
|         from .shape_infers import InferDepthCifarResNet | ||||
|         from .shape_infers import InferCifarResNet | ||||
|         from .cell_infers import NASNetonCIFAR | ||||
|  | ||||
|         assert len(super_type.split("-")) == 2, "invalid super_type : {:}".format( | ||||
|             super_type | ||||
|         ) | ||||
|         infer_mode = super_type.split("-")[1] | ||||
|         if infer_mode == "width": | ||||
|             return InferWidthCifarResNet( | ||||
|                 config.module, | ||||
|                 config.depth, | ||||
|                 config.xchannels, | ||||
|                 config.class_num, | ||||
|                 config.zero_init_residual, | ||||
|             ) | ||||
|         elif infer_mode == "depth": | ||||
|             return InferDepthCifarResNet( | ||||
|                 config.module, | ||||
|                 config.depth, | ||||
|                 config.xblocks, | ||||
|                 config.class_num, | ||||
|                 config.zero_init_residual, | ||||
|             ) | ||||
|         elif infer_mode == "shape": | ||||
|             return InferCifarResNet( | ||||
|                 config.module, | ||||
|                 config.depth, | ||||
|                 config.xblocks, | ||||
|                 config.xchannels, | ||||
|                 config.class_num, | ||||
|                 config.zero_init_residual, | ||||
|             ) | ||||
|         elif infer_mode == "nasnet.cifar": | ||||
|             genotype = config.genotype | ||||
|             if extra_path is not None:  # reload genotype by extra_path | ||||
|                 if not osp.isfile(extra_path): | ||||
|                     raise ValueError("invalid extra_path : {:}".format(extra_path)) | ||||
|                 xdata = torch.load(extra_path) | ||||
|                 current_epoch = xdata["epoch"] | ||||
|                 genotype = xdata["genotypes"][current_epoch - 1] | ||||
|             C = config.C if hasattr(config, "C") else config.ichannel | ||||
|             N = config.N if hasattr(config, "N") else config.layers | ||||
|             return NASNetonCIFAR( | ||||
|                 C, N, config.stem_multi, config.class_num, genotype, config.auxiliary | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("invalid infer-mode : {:}".format(infer_mode)) | ||||
|     else: | ||||
|         raise ValueError("invalid super-type : {:}".format(super_type)) | ||||
|  | ||||
|  | ||||
| def get_imagenet_models(config): | ||||
|     super_type = getattr(config, "super_type", "basic") | ||||
|     if super_type == "basic": | ||||
|         from .ImageNet_ResNet import ResNet | ||||
|         from .ImageNet_MobileNetV2 import MobileNetV2 | ||||
|  | ||||
|         if config.arch == "resnet": | ||||
|             return ResNet( | ||||
|                 config.block_name, | ||||
|                 config.layers, | ||||
|                 config.deep_stem, | ||||
|                 config.class_num, | ||||
|                 config.zero_init_residual, | ||||
|                 config.groups, | ||||
|                 config.width_per_group, | ||||
|             ) | ||||
|         elif config.arch == "mobilenet_v2": | ||||
|             return MobileNetV2( | ||||
|                 config.class_num, | ||||
|                 config.width_multi, | ||||
|                 config.input_channel, | ||||
|                 config.last_channel, | ||||
|                 "InvertedResidual", | ||||
|                 config.dropout, | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("invalid arch : {:}".format(config.arch)) | ||||
|     elif super_type.startswith("infer"):  # NAS searched architecture | ||||
|         assert len(super_type.split("-")) == 2, "invalid super_type : {:}".format( | ||||
|             super_type | ||||
|         ) | ||||
|         infer_mode = super_type.split("-")[1] | ||||
|         if infer_mode == "shape": | ||||
|             from .shape_infers import InferImagenetResNet | ||||
|             from .shape_infers import InferMobileNetV2 | ||||
|  | ||||
|             if config.arch == "resnet": | ||||
|                 return InferImagenetResNet( | ||||
|                     config.block_name, | ||||
|                     config.layers, | ||||
|                     config.xblocks, | ||||
|                     config.xchannels, | ||||
|                     config.deep_stem, | ||||
|                     config.class_num, | ||||
|                     config.zero_init_residual, | ||||
|                 ) | ||||
|             elif config.arch == "MobileNetV2": | ||||
|                 return InferMobileNetV2( | ||||
|                     config.class_num, config.xchannels, config.xblocks, config.dropout | ||||
|                 ) | ||||
|             else: | ||||
|                 raise ValueError("invalid arch-mode : {:}".format(config.arch)) | ||||
|         else: | ||||
|             raise ValueError("invalid infer-mode : {:}".format(infer_mode)) | ||||
|     else: | ||||
|         raise ValueError("invalid super-type : {:}".format(super_type)) | ||||
|  | ||||
|  | ||||
| # Try to obtain the network by config. | ||||
| def obtain_model(config, extra_path=None): | ||||
|     if config.dataset == "cifar": | ||||
|         return get_cifar_models(config, extra_path) | ||||
|     elif config.dataset == "imagenet": | ||||
|         return get_imagenet_models(config) | ||||
|     else: | ||||
|         raise ValueError("invalid dataset in the model config : {:}".format(config)) | ||||
|  | ||||
|  | ||||
| def obtain_search_model(config): | ||||
|     if config.dataset == "cifar": | ||||
|         if config.arch == "resnet": | ||||
|             from .shape_searchs import SearchWidthCifarResNet | ||||
|             from .shape_searchs import SearchDepthCifarResNet | ||||
|             from .shape_searchs import SearchShapeCifarResNet | ||||
|  | ||||
|             if config.search_mode == "width": | ||||
|                 return SearchWidthCifarResNet( | ||||
|                     config.module, config.depth, config.class_num | ||||
|                 ) | ||||
|             elif config.search_mode == "depth": | ||||
|                 return SearchDepthCifarResNet( | ||||
|                     config.module, config.depth, config.class_num | ||||
|                 ) | ||||
|             elif config.search_mode == "shape": | ||||
|                 return SearchShapeCifarResNet( | ||||
|                     config.module, config.depth, config.class_num | ||||
|                 ) | ||||
|             else: | ||||
|                 raise ValueError("invalid search mode : {:}".format(config.search_mode)) | ||||
|         elif config.arch == "simres": | ||||
|             from .shape_searchs import SearchWidthSimResNet | ||||
|  | ||||
|             if config.search_mode == "width": | ||||
|                 return SearchWidthSimResNet(config.depth, config.class_num) | ||||
|             else: | ||||
|                 raise ValueError("invalid search mode : {:}".format(config.search_mode)) | ||||
|         else: | ||||
|             raise ValueError( | ||||
|                 "invalid arch : {:} for dataset [{:}]".format( | ||||
|                     config.arch, config.dataset | ||||
|                 ) | ||||
|             ) | ||||
|     elif config.dataset == "imagenet": | ||||
|         from .shape_searchs import SearchShapeImagenetResNet | ||||
|  | ||||
|         assert config.search_mode == "shape", "invalid search-mode : {:}".format( | ||||
|             config.search_mode | ||||
|         ) | ||||
|         if config.arch == "resnet": | ||||
|             return SearchShapeImagenetResNet( | ||||
|                 config.block_name, config.layers, config.deep_stem, config.class_num | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("invalid model config : {:}".format(config)) | ||||
|     else: | ||||
|         raise ValueError("invalid dataset in the model config : {:}".format(config)) | ||||
|  | ||||
|  | ||||
| def load_net_from_checkpoint(checkpoint): | ||||
|     assert osp.isfile(checkpoint), "checkpoint {:} does not exist".format(checkpoint) | ||||
|     checkpoint = torch.load(checkpoint) | ||||
|     model_config = dict2config(checkpoint["model-config"], None) | ||||
|     model = obtain_model(model_config) | ||||
|     model.load_state_dict(checkpoint["base-model"]) | ||||
|     return model | ||||
							
								
								
									
										5
									
								
								AutoDL-Projects/xautodl/models/cell_infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								AutoDL-Projects/xautodl/models/cell_infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,5 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| from .tiny_network import TinyNetwork | ||||
| from .nasnet_cifar import NASNetonCIFAR | ||||
							
								
								
									
										155
									
								
								AutoDL-Projects/xautodl/models/cell_infers/cells.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										155
									
								
								AutoDL-Projects/xautodl/models/cell_infers/cells.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,155 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
|  | ||||
| from xautodl.models.cell_operations import OPS | ||||
|  | ||||
|  | ||||
| # Cell for NAS-Bench-201 | ||||
| class InferCell(nn.Module): | ||||
|     def __init__( | ||||
|         self, genotype, C_in, C_out, stride, affine=True, track_running_stats=True | ||||
|     ): | ||||
|         super(InferCell, self).__init__() | ||||
|  | ||||
|         self.layers = nn.ModuleList() | ||||
|         self.node_IN = [] | ||||
|         self.node_IX = [] | ||||
|         self.genotype = deepcopy(genotype) | ||||
|         for i in range(1, len(genotype)): | ||||
|             node_info = genotype[i - 1] | ||||
|             cur_index = [] | ||||
|             cur_innod = [] | ||||
|             for (op_name, op_in) in node_info: | ||||
|                 if op_in == 0: | ||||
|                     layer = OPS[op_name]( | ||||
|                         C_in, C_out, stride, affine, track_running_stats | ||||
|                     ) | ||||
|                 else: | ||||
|                     layer = OPS[op_name](C_out, C_out, 1, affine, track_running_stats) | ||||
|                 cur_index.append(len(self.layers)) | ||||
|                 cur_innod.append(op_in) | ||||
|                 self.layers.append(layer) | ||||
|             self.node_IX.append(cur_index) | ||||
|             self.node_IN.append(cur_innod) | ||||
|         self.nodes = len(genotype) | ||||
|         self.in_dim = C_in | ||||
|         self.out_dim = C_out | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         string = "info :: nodes={nodes}, inC={in_dim}, outC={out_dim}".format( | ||||
|             **self.__dict__ | ||||
|         ) | ||||
|         laystr = [] | ||||
|         for i, (node_layers, node_innods) in enumerate(zip(self.node_IX, self.node_IN)): | ||||
|             y = [ | ||||
|                 "I{:}-L{:}".format(_ii, _il) | ||||
|                 for _il, _ii in zip(node_layers, node_innods) | ||||
|             ] | ||||
|             x = "{:}<-({:})".format(i + 1, ",".join(y)) | ||||
|             laystr.append(x) | ||||
|         return ( | ||||
|             string | ||||
|             + ", [{:}]".format(" | ".join(laystr)) | ||||
|             + ", {:}".format(self.genotype.tostr()) | ||||
|         ) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         nodes = [inputs] | ||||
|         for i, (node_layers, node_innods) in enumerate(zip(self.node_IX, self.node_IN)): | ||||
|             node_feature = sum( | ||||
|                 self.layers[_il](nodes[_ii]) | ||||
|                 for _il, _ii in zip(node_layers, node_innods) | ||||
|             ) | ||||
|             nodes.append(node_feature) | ||||
|         return nodes[-1] | ||||
|  | ||||
|  | ||||
| # Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018 | ||||
| class NASNetInferCell(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         genotype, | ||||
|         C_prev_prev, | ||||
|         C_prev, | ||||
|         C, | ||||
|         reduction, | ||||
|         reduction_prev, | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ): | ||||
|         super(NASNetInferCell, self).__init__() | ||||
|         self.reduction = reduction | ||||
|         if reduction_prev: | ||||
|             self.preprocess0 = OPS["skip_connect"]( | ||||
|                 C_prev_prev, C, 2, affine, track_running_stats | ||||
|             ) | ||||
|         else: | ||||
|             self.preprocess0 = OPS["nor_conv_1x1"]( | ||||
|                 C_prev_prev, C, 1, affine, track_running_stats | ||||
|             ) | ||||
|         self.preprocess1 = OPS["nor_conv_1x1"]( | ||||
|             C_prev, C, 1, affine, track_running_stats | ||||
|         ) | ||||
|  | ||||
|         if not reduction: | ||||
|             nodes, concats = genotype["normal"], genotype["normal_concat"] | ||||
|         else: | ||||
|             nodes, concats = genotype["reduce"], genotype["reduce_concat"] | ||||
|         self._multiplier = len(concats) | ||||
|         self._concats = concats | ||||
|         self._steps = len(nodes) | ||||
|         self._nodes = nodes | ||||
|         self.edges = nn.ModuleDict() | ||||
|         for i, node in enumerate(nodes): | ||||
|             for in_node in node: | ||||
|                 name, j = in_node[0], in_node[1] | ||||
|                 stride = 2 if reduction and j < 2 else 1 | ||||
|                 node_str = "{:}<-{:}".format(i + 2, j) | ||||
|                 self.edges[node_str] = OPS[name]( | ||||
|                     C, C, stride, affine, track_running_stats | ||||
|                 ) | ||||
|  | ||||
|     # [TODO] to support drop_prob in this function.. | ||||
|     def forward(self, s0, s1, unused_drop_prob): | ||||
|         s0 = self.preprocess0(s0) | ||||
|         s1 = self.preprocess1(s1) | ||||
|  | ||||
|         states = [s0, s1] | ||||
|         for i, node in enumerate(self._nodes): | ||||
|             clist = [] | ||||
|             for in_node in node: | ||||
|                 name, j = in_node[0], in_node[1] | ||||
|                 node_str = "{:}<-{:}".format(i + 2, j) | ||||
|                 op = self.edges[node_str] | ||||
|                 clist.append(op(states[j])) | ||||
|             states.append(sum(clist)) | ||||
|         return torch.cat([states[x] for x in self._concats], dim=1) | ||||
|  | ||||
|  | ||||
| class AuxiliaryHeadCIFAR(nn.Module): | ||||
|     def __init__(self, C, num_classes): | ||||
|         """assuming input size 8x8""" | ||||
|         super(AuxiliaryHeadCIFAR, self).__init__() | ||||
|         self.features = nn.Sequential( | ||||
|             nn.ReLU(inplace=True), | ||||
|             nn.AvgPool2d( | ||||
|                 5, stride=3, padding=0, count_include_pad=False | ||||
|             ),  # image size = 2 x 2 | ||||
|             nn.Conv2d(C, 128, 1, bias=False), | ||||
|             nn.BatchNorm2d(128), | ||||
|             nn.ReLU(inplace=True), | ||||
|             nn.Conv2d(128, 768, 2, bias=False), | ||||
|             nn.BatchNorm2d(768), | ||||
|             nn.ReLU(inplace=True), | ||||
|         ) | ||||
|         self.classifier = nn.Linear(768, num_classes) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.features(x) | ||||
|         x = self.classifier(x.view(x.size(0), -1)) | ||||
|         return x | ||||
							
								
								
									
										118
									
								
								AutoDL-Projects/xautodl/models/cell_infers/nasnet_cifar.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										118
									
								
								AutoDL-Projects/xautodl/models/cell_infers/nasnet_cifar.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,118 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
|  | ||||
| from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetonCIFAR(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C, | ||||
|         N, | ||||
|         stem_multiplier, | ||||
|         num_classes, | ||||
|         genotype, | ||||
|         auxiliary, | ||||
|         affine=True, | ||||
|         track_running_stats=True, | ||||
|     ): | ||||
|         super(NASNetonCIFAR, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|         self.auxiliary_index = None | ||||
|         self.auxiliary_head = None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             cell = InferCell( | ||||
|                 genotype, | ||||
|                 C_prev_prev, | ||||
|                 C_prev, | ||||
|                 C_curr, | ||||
|                 reduction, | ||||
|                 reduction_prev, | ||||
|                 affine, | ||||
|                 track_running_stats, | ||||
|             ) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = ( | ||||
|                 C_prev, | ||||
|                 cell._multiplier * C_curr, | ||||
|                 reduction, | ||||
|             ) | ||||
|             if reduction and C_curr == C * 4 and auxiliary: | ||||
|                 self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes) | ||||
|                 self.auxiliary_index = index | ||||
|         self._Layer = len(self.cells) | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.drop_path_prob = -1 | ||||
|  | ||||
|     def update_drop_path(self, drop_path_prob): | ||||
|         self.drop_path_prob = drop_path_prob | ||||
|  | ||||
|     def auxiliary_param(self): | ||||
|         if self.auxiliary_head is None: | ||||
|             return [] | ||||
|         else: | ||||
|             return list(self.auxiliary_head.parameters()) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         stem_feature, logits_aux = self.stem(inputs), None | ||||
|         cell_results = [stem_feature, stem_feature] | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob) | ||||
|             cell_results.append(cell_feature) | ||||
|             if ( | ||||
|                 self.auxiliary_index is not None | ||||
|                 and i == self.auxiliary_index | ||||
|                 and self.training | ||||
|             ): | ||||
|                 logits_aux = self.auxiliary_head(cell_results[-1]) | ||||
|         out = self.lastact(cell_results[-1]) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|         if logits_aux is None: | ||||
|             return out, logits | ||||
|         else: | ||||
|             return out, [logits, logits_aux] | ||||
							
								
								
									
										63
									
								
								AutoDL-Projects/xautodl/models/cell_infers/tiny_network.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										63
									
								
								AutoDL-Projects/xautodl/models/cell_infers/tiny_network.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,63 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .cells import InferCell | ||||
|  | ||||
|  | ||||
| # The macro structure for architectures in NAS-Bench-201 | ||||
| class TinyNetwork(nn.Module): | ||||
|     def __init__(self, C, N, genotype, num_classes): | ||||
|         super(TinyNetwork, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|  | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         C_prev = C | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2, True) | ||||
|             else: | ||||
|                 cell = InferCell(genotype, C_prev, C_curr, 1) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self._Layer = len(self.cells) | ||||
|  | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										553
									
								
								AutoDL-Projects/xautodl/models/cell_operations.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										553
									
								
								AutoDL-Projects/xautodl/models/cell_operations.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,553 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| __all__ = ["OPS", "RAW_OP_CLASSES", "ResNetBasicblock", "SearchSpaceNames"] | ||||
|  | ||||
| OPS = { | ||||
|     "none": lambda C_in, C_out, stride, affine, track_running_stats: Zero( | ||||
|         C_in, C_out, stride | ||||
|     ), | ||||
|     "avg_pool_3x3": lambda C_in, C_out, stride, affine, track_running_stats: POOLING( | ||||
|         C_in, C_out, stride, "avg", affine, track_running_stats | ||||
|     ), | ||||
|     "max_pool_3x3": lambda C_in, C_out, stride, affine, track_running_stats: POOLING( | ||||
|         C_in, C_out, stride, "max", affine, track_running_stats | ||||
|     ), | ||||
|     "nor_conv_7x7": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (7, 7), | ||||
|         (stride, stride), | ||||
|         (3, 3), | ||||
|         (1, 1), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "nor_conv_3x3": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (3, 3), | ||||
|         (stride, stride), | ||||
|         (1, 1), | ||||
|         (1, 1), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "nor_conv_1x1": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (1, 1), | ||||
|         (stride, stride), | ||||
|         (0, 0), | ||||
|         (1, 1), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "dua_sepc_3x3": lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (3, 3), | ||||
|         (stride, stride), | ||||
|         (1, 1), | ||||
|         (1, 1), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "dua_sepc_5x5": lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (5, 5), | ||||
|         (stride, stride), | ||||
|         (2, 2), | ||||
|         (1, 1), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "dil_sepc_3x3": lambda C_in, C_out, stride, affine, track_running_stats: SepConv( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (3, 3), | ||||
|         (stride, stride), | ||||
|         (2, 2), | ||||
|         (2, 2), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "dil_sepc_5x5": lambda C_in, C_out, stride, affine, track_running_stats: SepConv( | ||||
|         C_in, | ||||
|         C_out, | ||||
|         (5, 5), | ||||
|         (stride, stride), | ||||
|         (4, 4), | ||||
|         (2, 2), | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ), | ||||
|     "skip_connect": lambda C_in, C_out, stride, affine, track_running_stats: Identity() | ||||
|     if stride == 1 and C_in == C_out | ||||
|     else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats), | ||||
| } | ||||
|  | ||||
| CONNECT_NAS_BENCHMARK = ["none", "skip_connect", "nor_conv_3x3"] | ||||
| NAS_BENCH_201 = ["none", "skip_connect", "nor_conv_1x1", "nor_conv_3x3", "avg_pool_3x3"] | ||||
| DARTS_SPACE = [ | ||||
|     "none", | ||||
|     "skip_connect", | ||||
|     "dua_sepc_3x3", | ||||
|     "dua_sepc_5x5", | ||||
|     "dil_sepc_3x3", | ||||
|     "dil_sepc_5x5", | ||||
|     "avg_pool_3x3", | ||||
|     "max_pool_3x3", | ||||
| ] | ||||
|  | ||||
| SearchSpaceNames = { | ||||
|     "connect-nas": CONNECT_NAS_BENCHMARK, | ||||
|     "nats-bench": NAS_BENCH_201, | ||||
|     "nas-bench-201": NAS_BENCH_201, | ||||
|     "darts": DARTS_SPACE, | ||||
| } | ||||
|  | ||||
|  | ||||
| class ReLUConvBN(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C_in, | ||||
|         C_out, | ||||
|         kernel_size, | ||||
|         stride, | ||||
|         padding, | ||||
|         dilation, | ||||
|         affine, | ||||
|         track_running_stats=True, | ||||
|     ): | ||||
|         super(ReLUConvBN, self).__init__() | ||||
|         self.op = nn.Sequential( | ||||
|             nn.ReLU(inplace=False), | ||||
|             nn.Conv2d( | ||||
|                 C_in, | ||||
|                 C_out, | ||||
|                 kernel_size, | ||||
|                 stride=stride, | ||||
|                 padding=padding, | ||||
|                 dilation=dilation, | ||||
|                 bias=not affine, | ||||
|             ), | ||||
|             nn.BatchNorm2d( | ||||
|                 C_out, affine=affine, track_running_stats=track_running_stats | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.op(x) | ||||
|  | ||||
|  | ||||
| class SepConv(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C_in, | ||||
|         C_out, | ||||
|         kernel_size, | ||||
|         stride, | ||||
|         padding, | ||||
|         dilation, | ||||
|         affine, | ||||
|         track_running_stats=True, | ||||
|     ): | ||||
|         super(SepConv, self).__init__() | ||||
|         self.op = nn.Sequential( | ||||
|             nn.ReLU(inplace=False), | ||||
|             nn.Conv2d( | ||||
|                 C_in, | ||||
|                 C_in, | ||||
|                 kernel_size=kernel_size, | ||||
|                 stride=stride, | ||||
|                 padding=padding, | ||||
|                 dilation=dilation, | ||||
|                 groups=C_in, | ||||
|                 bias=False, | ||||
|             ), | ||||
|             nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=not affine), | ||||
|             nn.BatchNorm2d( | ||||
|                 C_out, affine=affine, track_running_stats=track_running_stats | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.op(x) | ||||
|  | ||||
|  | ||||
| class DualSepConv(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C_in, | ||||
|         C_out, | ||||
|         kernel_size, | ||||
|         stride, | ||||
|         padding, | ||||
|         dilation, | ||||
|         affine, | ||||
|         track_running_stats=True, | ||||
|     ): | ||||
|         super(DualSepConv, self).__init__() | ||||
|         self.op_a = SepConv( | ||||
|             C_in, | ||||
|             C_in, | ||||
|             kernel_size, | ||||
|             stride, | ||||
|             padding, | ||||
|             dilation, | ||||
|             affine, | ||||
|             track_running_stats, | ||||
|         ) | ||||
|         self.op_b = SepConv( | ||||
|             C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.op_a(x) | ||||
|         x = self.op_b(x) | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     def __init__(self, inplanes, planes, stride, affine=True, track_running_stats=True): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_a = ReLUConvBN( | ||||
|             inplanes, planes, 3, stride, 1, 1, affine, track_running_stats | ||||
|         ) | ||||
|         self.conv_b = ReLUConvBN( | ||||
|             planes, planes, 3, 1, 1, 1, affine, track_running_stats | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = nn.Sequential( | ||||
|                 nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||
|                 nn.Conv2d( | ||||
|                     inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False | ||||
|                 ), | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ReLUConvBN( | ||||
|                 inplanes, planes, 1, 1, 0, 1, affine, track_running_stats | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.in_dim = inplanes | ||||
|         self.out_dim = planes | ||||
|         self.stride = stride | ||||
|         self.num_conv = 2 | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         string = "{name}(inC={in_dim}, outC={out_dim}, stride={stride})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|         return string | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         return residual + basicblock | ||||
|  | ||||
|  | ||||
| class POOLING(nn.Module): | ||||
|     def __init__( | ||||
|         self, C_in, C_out, stride, mode, affine=True, track_running_stats=True | ||||
|     ): | ||||
|         super(POOLING, self).__init__() | ||||
|         if C_in == C_out: | ||||
|             self.preprocess = None | ||||
|         else: | ||||
|             self.preprocess = ReLUConvBN( | ||||
|                 C_in, C_out, 1, 1, 0, 1, affine, track_running_stats | ||||
|             ) | ||||
|         if mode == "avg": | ||||
|             self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) | ||||
|         elif mode == "max": | ||||
|             self.op = nn.MaxPool2d(3, stride=stride, padding=1) | ||||
|         else: | ||||
|             raise ValueError("Invalid mode={:} in POOLING".format(mode)) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.preprocess: | ||||
|             x = self.preprocess(inputs) | ||||
|         else: | ||||
|             x = inputs | ||||
|         return self.op(x) | ||||
|  | ||||
|  | ||||
| class Identity(nn.Module): | ||||
|     def __init__(self): | ||||
|         super(Identity, self).__init__() | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class Zero(nn.Module): | ||||
|     def __init__(self, C_in, C_out, stride): | ||||
|         super(Zero, self).__init__() | ||||
|         self.C_in = C_in | ||||
|         self.C_out = C_out | ||||
|         self.stride = stride | ||||
|         self.is_zero = True | ||||
|  | ||||
|     def forward(self, x): | ||||
|         if self.C_in == self.C_out: | ||||
|             if self.stride == 1: | ||||
|                 return x.mul(0.0) | ||||
|             else: | ||||
|                 return x[:, :, :: self.stride, :: self.stride].mul(0.0) | ||||
|         else: | ||||
|             shape = list(x.shape) | ||||
|             shape[1] = self.C_out | ||||
|             zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device) | ||||
|             return zeros | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "C_in={C_in}, C_out={C_out}, stride={stride}".format(**self.__dict__) | ||||
|  | ||||
|  | ||||
| class FactorizedReduce(nn.Module): | ||||
|     def __init__(self, C_in, C_out, stride, affine, track_running_stats): | ||||
|         super(FactorizedReduce, self).__init__() | ||||
|         self.stride = stride | ||||
|         self.C_in = C_in | ||||
|         self.C_out = C_out | ||||
|         self.relu = nn.ReLU(inplace=False) | ||||
|         if stride == 2: | ||||
|             # assert C_out % 2 == 0, 'C_out : {:}'.format(C_out) | ||||
|             C_outs = [C_out // 2, C_out - C_out // 2] | ||||
|             self.convs = nn.ModuleList() | ||||
|             for i in range(2): | ||||
|                 self.convs.append( | ||||
|                     nn.Conv2d( | ||||
|                         C_in, C_outs[i], 1, stride=stride, padding=0, bias=not affine | ||||
|                     ) | ||||
|                 ) | ||||
|             self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) | ||||
|         elif stride == 1: | ||||
|             self.conv = nn.Conv2d( | ||||
|                 C_in, C_out, 1, stride=stride, padding=0, bias=not affine | ||||
|             ) | ||||
|         else: | ||||
|             raise ValueError("Invalid stride : {:}".format(stride)) | ||||
|         self.bn = nn.BatchNorm2d( | ||||
|             C_out, affine=affine, track_running_stats=track_running_stats | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         if self.stride == 2: | ||||
|             x = self.relu(x) | ||||
|             y = self.pad(x) | ||||
|             out = torch.cat([self.convs[0](x), self.convs[1](y[:, :, 1:, 1:])], dim=1) | ||||
|         else: | ||||
|             out = self.conv(x) | ||||
|         out = self.bn(out) | ||||
|         return out | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "C_in={C_in}, C_out={C_out}, stride={stride}".format(**self.__dict__) | ||||
|  | ||||
|  | ||||
| # Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019 | ||||
| class PartAwareOp(nn.Module): | ||||
|     def __init__(self, C_in, C_out, stride, part=4): | ||||
|         super().__init__() | ||||
|         self.part = 4 | ||||
|         self.hidden = C_in // 3 | ||||
|         self.avg_pool = nn.AdaptiveAvgPool2d(1) | ||||
|         self.local_conv_list = nn.ModuleList() | ||||
|         for i in range(self.part): | ||||
|             self.local_conv_list.append( | ||||
|                 nn.Sequential( | ||||
|                     nn.ReLU(), | ||||
|                     nn.Conv2d(C_in, self.hidden, 1), | ||||
|                     nn.BatchNorm2d(self.hidden, affine=True), | ||||
|                 ) | ||||
|             ) | ||||
|         self.W_K = nn.Linear(self.hidden, self.hidden) | ||||
|         self.W_Q = nn.Linear(self.hidden, self.hidden) | ||||
|  | ||||
|         if stride == 2: | ||||
|             self.last = FactorizedReduce(C_in + self.hidden, C_out, 2) | ||||
|         elif stride == 1: | ||||
|             self.last = FactorizedReduce(C_in + self.hidden, C_out, 1) | ||||
|         else: | ||||
|             raise ValueError("Invalid Stride : {:}".format(stride)) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         batch, C, H, W = x.size() | ||||
|         assert H >= self.part, "input size too small : {:} vs {:}".format( | ||||
|             x.shape, self.part | ||||
|         ) | ||||
|         IHs = [0] | ||||
|         for i in range(self.part): | ||||
|             IHs.append(min(H, int((i + 1) * (float(H) / self.part)))) | ||||
|         local_feat_list = [] | ||||
|         for i in range(self.part): | ||||
|             feature = x[:, :, IHs[i] : IHs[i + 1], :] | ||||
|             xfeax = self.avg_pool(feature) | ||||
|             xfea = self.local_conv_list[i](xfeax) | ||||
|             local_feat_list.append(xfea) | ||||
|         part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part) | ||||
|         part_feature = part_feature.transpose(1, 2).contiguous() | ||||
|         part_K = self.W_K(part_feature) | ||||
|         part_Q = self.W_Q(part_feature).transpose(1, 2).contiguous() | ||||
|         weight_att = torch.bmm(part_K, part_Q) | ||||
|         attention = torch.softmax(weight_att, dim=2) | ||||
|         aggreateF = torch.bmm(attention, part_feature).transpose(1, 2).contiguous() | ||||
|         features = [] | ||||
|         for i in range(self.part): | ||||
|             feature = aggreateF[:, :, i : i + 1].expand( | ||||
|                 batch, self.hidden, IHs[i + 1] - IHs[i] | ||||
|             ) | ||||
|             feature = feature.view(batch, self.hidden, IHs[i + 1] - IHs[i], 1) | ||||
|             features.append(feature) | ||||
|         features = torch.cat(features, dim=2).expand(batch, self.hidden, H, W) | ||||
|         final_fea = torch.cat((x, features), dim=1) | ||||
|         outputs = self.last(final_fea) | ||||
|         return outputs | ||||
|  | ||||
|  | ||||
| def drop_path(x, drop_prob): | ||||
|     if drop_prob > 0.0: | ||||
|         keep_prob = 1.0 - drop_prob | ||||
|         mask = x.new_zeros(x.size(0), 1, 1, 1) | ||||
|         mask = mask.bernoulli_(keep_prob) | ||||
|         x = torch.div(x, keep_prob) | ||||
|         x.mul_(mask) | ||||
|     return x | ||||
|  | ||||
|  | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours | ||||
| class GDAS_Reduction_Cell(nn.Module): | ||||
|     def __init__( | ||||
|         self, C_prev_prev, C_prev, C, reduction_prev, affine, track_running_stats | ||||
|     ): | ||||
|         super(GDAS_Reduction_Cell, self).__init__() | ||||
|         if reduction_prev: | ||||
|             self.preprocess0 = FactorizedReduce( | ||||
|                 C_prev_prev, C, 2, affine, track_running_stats | ||||
|             ) | ||||
|         else: | ||||
|             self.preprocess0 = ReLUConvBN( | ||||
|                 C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats | ||||
|             ) | ||||
|         self.preprocess1 = ReLUConvBN( | ||||
|             C_prev, C, 1, 1, 0, 1, affine, track_running_stats | ||||
|         ) | ||||
|  | ||||
|         self.reduction = True | ||||
|         self.ops1 = nn.ModuleList( | ||||
|             [ | ||||
|                 nn.Sequential( | ||||
|                     nn.ReLU(inplace=False), | ||||
|                     nn.Conv2d( | ||||
|                         C, | ||||
|                         C, | ||||
|                         (1, 3), | ||||
|                         stride=(1, 2), | ||||
|                         padding=(0, 1), | ||||
|                         groups=8, | ||||
|                         bias=not affine, | ||||
|                     ), | ||||
|                     nn.Conv2d( | ||||
|                         C, | ||||
|                         C, | ||||
|                         (3, 1), | ||||
|                         stride=(2, 1), | ||||
|                         padding=(1, 0), | ||||
|                         groups=8, | ||||
|                         bias=not affine, | ||||
|                     ), | ||||
|                     nn.BatchNorm2d( | ||||
|                         C, affine=affine, track_running_stats=track_running_stats | ||||
|                     ), | ||||
|                     nn.ReLU(inplace=False), | ||||
|                     nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine), | ||||
|                     nn.BatchNorm2d( | ||||
|                         C, affine=affine, track_running_stats=track_running_stats | ||||
|                     ), | ||||
|                 ), | ||||
|                 nn.Sequential( | ||||
|                     nn.ReLU(inplace=False), | ||||
|                     nn.Conv2d( | ||||
|                         C, | ||||
|                         C, | ||||
|                         (1, 3), | ||||
|                         stride=(1, 2), | ||||
|                         padding=(0, 1), | ||||
|                         groups=8, | ||||
|                         bias=not affine, | ||||
|                     ), | ||||
|                     nn.Conv2d( | ||||
|                         C, | ||||
|                         C, | ||||
|                         (3, 1), | ||||
|                         stride=(2, 1), | ||||
|                         padding=(1, 0), | ||||
|                         groups=8, | ||||
|                         bias=not affine, | ||||
|                     ), | ||||
|                     nn.BatchNorm2d( | ||||
|                         C, affine=affine, track_running_stats=track_running_stats | ||||
|                     ), | ||||
|                     nn.ReLU(inplace=False), | ||||
|                     nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine), | ||||
|                     nn.BatchNorm2d( | ||||
|                         C, affine=affine, track_running_stats=track_running_stats | ||||
|                     ), | ||||
|                 ), | ||||
|             ] | ||||
|         ) | ||||
|  | ||||
|         self.ops2 = nn.ModuleList( | ||||
|             [ | ||||
|                 nn.Sequential( | ||||
|                     nn.MaxPool2d(3, stride=2, padding=1), | ||||
|                     nn.BatchNorm2d( | ||||
|                         C, affine=affine, track_running_stats=track_running_stats | ||||
|                     ), | ||||
|                 ), | ||||
|                 nn.Sequential( | ||||
|                     nn.MaxPool2d(3, stride=2, padding=1), | ||||
|                     nn.BatchNorm2d( | ||||
|                         C, affine=affine, track_running_stats=track_running_stats | ||||
|                     ), | ||||
|                 ), | ||||
|             ] | ||||
|         ) | ||||
|  | ||||
|     @property | ||||
|     def multiplier(self): | ||||
|         return 4 | ||||
|  | ||||
|     def forward(self, s0, s1, drop_prob=-1): | ||||
|         s0 = self.preprocess0(s0) | ||||
|         s1 = self.preprocess1(s1) | ||||
|  | ||||
|         X0 = self.ops1[0](s0) | ||||
|         X1 = self.ops1[1](s1) | ||||
|         if self.training and drop_prob > 0.0: | ||||
|             X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob) | ||||
|  | ||||
|         # X2 = self.ops2[0] (X0+X1) | ||||
|         X2 = self.ops2[0](s0) | ||||
|         X3 = self.ops2[1](s1) | ||||
|         if self.training and drop_prob > 0.0: | ||||
|             X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob) | ||||
|         return torch.cat([X0, X1, X2, X3], dim=1) | ||||
|  | ||||
|  | ||||
| # To manage the useful classes in this file. | ||||
| RAW_OP_CLASSES = {"gdas_reduction": GDAS_Reduction_Cell} | ||||
							
								
								
									
										33
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										33
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,33 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # The macro structure is defined in NAS-Bench-201 | ||||
| from .search_model_darts import TinyNetworkDarts | ||||
| from .search_model_gdas import TinyNetworkGDAS | ||||
| from .search_model_setn import TinyNetworkSETN | ||||
| from .search_model_enas import TinyNetworkENAS | ||||
| from .search_model_random import TinyNetworkRANDOM | ||||
| from .generic_model import GenericNAS201Model | ||||
| from .genotypes import Structure as CellStructure, architectures as CellArchitectures | ||||
|  | ||||
| # NASNet-based macro structure | ||||
| from .search_model_gdas_nasnet import NASNetworkGDAS | ||||
| from .search_model_gdas_frc_nasnet import NASNetworkGDAS_FRC | ||||
| from .search_model_darts_nasnet import NASNetworkDARTS | ||||
|  | ||||
|  | ||||
| nas201_super_nets = { | ||||
|     "DARTS-V1": TinyNetworkDarts, | ||||
|     "DARTS-V2": TinyNetworkDarts, | ||||
|     "GDAS": TinyNetworkGDAS, | ||||
|     "SETN": TinyNetworkSETN, | ||||
|     "ENAS": TinyNetworkENAS, | ||||
|     "RANDOM": TinyNetworkRANDOM, | ||||
|     "generic": GenericNAS201Model, | ||||
| } | ||||
|  | ||||
| nasnet_super_nets = { | ||||
|     "GDAS": NASNetworkGDAS, | ||||
|     "GDAS_FRC": NASNetworkGDAS_FRC, | ||||
|     "DARTS": NASNetworkDARTS, | ||||
| } | ||||
							
								
								
									
										14
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/_test_module.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/_test_module.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,14 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| from search_model_enas_utils import Controller | ||||
|  | ||||
|  | ||||
| def main(): | ||||
|     controller = Controller(6, 4) | ||||
|     predictions = controller() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     main() | ||||
							
								
								
									
										366
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/generic_model.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										366
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/generic_model.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,366 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 # | ||||
| ##################################################### | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from typing import Text | ||||
| from torch.distributions.categorical import Categorical | ||||
|  | ||||
| from ..cell_operations import ResNetBasicblock, drop_path | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class Controller(nn.Module): | ||||
|     # we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py | ||||
|     def __init__( | ||||
|         self, | ||||
|         edge2index, | ||||
|         op_names, | ||||
|         max_nodes, | ||||
|         lstm_size=32, | ||||
|         lstm_num_layers=2, | ||||
|         tanh_constant=2.5, | ||||
|         temperature=5.0, | ||||
|     ): | ||||
|         super(Controller, self).__init__() | ||||
|         # assign the attributes | ||||
|         self.max_nodes = max_nodes | ||||
|         self.num_edge = len(edge2index) | ||||
|         self.edge2index = edge2index | ||||
|         self.num_ops = len(op_names) | ||||
|         self.op_names = op_names | ||||
|         self.lstm_size = lstm_size | ||||
|         self.lstm_N = lstm_num_layers | ||||
|         self.tanh_constant = tanh_constant | ||||
|         self.temperature = temperature | ||||
|         # create parameters | ||||
|         self.register_parameter( | ||||
|             "input_vars", nn.Parameter(torch.Tensor(1, 1, lstm_size)) | ||||
|         ) | ||||
|         self.w_lstm = nn.LSTM( | ||||
|             input_size=self.lstm_size, | ||||
|             hidden_size=self.lstm_size, | ||||
|             num_layers=self.lstm_N, | ||||
|         ) | ||||
|         self.w_embd = nn.Embedding(self.num_ops, self.lstm_size) | ||||
|         self.w_pred = nn.Linear(self.lstm_size, self.num_ops) | ||||
|  | ||||
|         nn.init.uniform_(self.input_vars, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_embd.weight, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_pred.weight, -0.1, 0.1) | ||||
|  | ||||
|     def convert_structure(self, _arch): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op_index = _arch[self.edge2index[node_str]] | ||||
|                 op_name = self.op_names[op_index] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def forward(self): | ||||
|  | ||||
|         inputs, h0 = self.input_vars, None | ||||
|         log_probs, entropys, sampled_arch = [], [], [] | ||||
|         for iedge in range(self.num_edge): | ||||
|             outputs, h0 = self.w_lstm(inputs, h0) | ||||
|  | ||||
|             logits = self.w_pred(outputs) | ||||
|             logits = logits / self.temperature | ||||
|             logits = self.tanh_constant * torch.tanh(logits) | ||||
|             # distribution | ||||
|             op_distribution = Categorical(logits=logits) | ||||
|             op_index = op_distribution.sample() | ||||
|             sampled_arch.append(op_index.item()) | ||||
|  | ||||
|             op_log_prob = op_distribution.log_prob(op_index) | ||||
|             log_probs.append(op_log_prob.view(-1)) | ||||
|             op_entropy = op_distribution.entropy() | ||||
|             entropys.append(op_entropy.view(-1)) | ||||
|  | ||||
|             # obtain the input embedding for the next step | ||||
|             inputs = self.w_embd(op_index) | ||||
|         return ( | ||||
|             torch.sum(torch.cat(log_probs)), | ||||
|             torch.sum(torch.cat(entropys)), | ||||
|             self.convert_structure(sampled_arch), | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class GenericNAS201Model(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(GenericNAS201Model, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._max_nodes = max_nodes | ||||
|         self._stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self._cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self._cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self._op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self._cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential( | ||||
|             nn.BatchNorm2d( | ||||
|                 C_prev, affine=affine, track_running_stats=track_running_stats | ||||
|             ), | ||||
|             nn.ReLU(inplace=True), | ||||
|         ) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self._num_edge = num_edge | ||||
|         # algorithm related | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self._mode = None | ||||
|         self.dynamic_cell = None | ||||
|         self._tau = None | ||||
|         self._algo = None | ||||
|         self._drop_path = None | ||||
|         self.verbose = False | ||||
|  | ||||
|     def set_algo(self, algo: Text): | ||||
|         # used for searching | ||||
|         assert self._algo is None, "This functioin can only be called once." | ||||
|         self._algo = algo | ||||
|         if algo == "enas": | ||||
|             self.controller = Controller( | ||||
|                 self.edge2index, self._op_names, self._max_nodes | ||||
|             ) | ||||
|         else: | ||||
|             self.arch_parameters = nn.Parameter( | ||||
|                 1e-3 * torch.randn(self._num_edge, len(self._op_names)) | ||||
|             ) | ||||
|             if algo == "gdas": | ||||
|                 self._tau = 10 | ||||
|  | ||||
|     def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|         assert mode in ["gdas", "enas", "urs", "joint", "select", "dynamic"] | ||||
|         self._mode = mode | ||||
|         if mode == "dynamic": | ||||
|             self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|         else: | ||||
|             self.dynamic_cell = None | ||||
|  | ||||
|     def set_drop_path(self, progress, drop_path_rate): | ||||
|         if drop_path_rate is None: | ||||
|             self._drop_path = None | ||||
|         elif progress is None: | ||||
|             self._drop_path = drop_path_rate | ||||
|         else: | ||||
|             self._drop_path = progress * drop_path_rate | ||||
|  | ||||
|     @property | ||||
|     def mode(self): | ||||
|         return self._mode | ||||
|  | ||||
|     @property | ||||
|     def drop_path(self): | ||||
|         return self._drop_path | ||||
|  | ||||
|     @property | ||||
|     def weights(self): | ||||
|         xlist = list(self._stem.parameters()) | ||||
|         xlist += list(self._cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) | ||||
|         xlist += list(self.global_pooling.parameters()) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def set_tau(self, tau): | ||||
|         self._tau = tau | ||||
|  | ||||
|     @property | ||||
|     def tau(self): | ||||
|         return self._tau | ||||
|  | ||||
|     @property | ||||
|     def alphas(self): | ||||
|         if self._algo == "enas": | ||||
|             return list(self.controller.parameters()) | ||||
|         else: | ||||
|             return [self.arch_parameters] | ||||
|  | ||||
|     @property | ||||
|     def message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self._cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self._cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             if self._algo == "enas": | ||||
|                 return "w_pred :\n{:}".format(self.controller.w_pred.weight) | ||||
|             else: | ||||
|                 return "arch-parameters :\n{:}".format( | ||||
|                     nn.functional.softmax(self.arch_parameters, dim=-1).cpu() | ||||
|                 ) | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     @property | ||||
|     def genotype(self): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self._max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 with torch.no_grad(): | ||||
|                     weights = self.arch_parameters[self.edge2index[node_str]] | ||||
|                     op_name = self._op_names[weights.argmax().item()] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def dync_genotype(self, use_random=False): | ||||
|         genotypes = [] | ||||
|         with torch.no_grad(): | ||||
|             alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|         for i in range(1, self._max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 if use_random: | ||||
|                     op_name = random.choice(self._op_names) | ||||
|                 else: | ||||
|                     weights = alphas_cpu[self.edge2index[node_str]] | ||||
|                     op_index = torch.multinomial(weights, 1).item() | ||||
|                     op_name = self._op_names[op_index] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def get_log_prob(self, arch): | ||||
|         with torch.no_grad(): | ||||
|             logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) | ||||
|         select_logits = [] | ||||
|         for i, node_info in enumerate(arch.nodes): | ||||
|             for op, xin in node_info: | ||||
|                 node_str = "{:}<-{:}".format(i + 1, xin) | ||||
|                 op_index = self._op_names.index(op) | ||||
|                 select_logits.append(logits[self.edge2index[node_str], op_index]) | ||||
|         return sum(select_logits).item() | ||||
|  | ||||
|     def return_topK(self, K, use_random=False): | ||||
|         archs = Structure.gen_all(self._op_names, self._max_nodes, False) | ||||
|         pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||
|         if K < 0 or K >= len(archs): | ||||
|             K = len(archs) | ||||
|         if use_random: | ||||
|             return random.sample(archs, K) | ||||
|         else: | ||||
|             sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|             return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|             return return_pairs | ||||
|  | ||||
|     def normalize_archp(self): | ||||
|         if self.mode == "gdas": | ||||
|             while True: | ||||
|                 gumbels = -torch.empty_like(self.arch_parameters).exponential_().log() | ||||
|                 logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau | ||||
|                 probs = nn.functional.softmax(logits, dim=1) | ||||
|                 index = probs.max(-1, keepdim=True)[1] | ||||
|                 one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|                 hardwts = one_h - probs.detach() + probs | ||||
|                 if ( | ||||
|                     (torch.isinf(gumbels).any()) | ||||
|                     or (torch.isinf(probs).any()) | ||||
|                     or (torch.isnan(probs).any()) | ||||
|                 ): | ||||
|                     continue | ||||
|                 else: | ||||
|                     break | ||||
|             with torch.no_grad(): | ||||
|                 hardwts_cpu = hardwts.detach().cpu() | ||||
|             return hardwts, hardwts_cpu, index, "GUMBEL" | ||||
|         else: | ||||
|             alphas = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|             index = alphas.max(-1, keepdim=True)[1] | ||||
|             with torch.no_grad(): | ||||
|                 alphas_cpu = alphas.detach().cpu() | ||||
|             return alphas, alphas_cpu, index, "SOFTMAX" | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         alphas, alphas_cpu, index, verbose_str = self.normalize_archp() | ||||
|         feature = self._stem(inputs) | ||||
|         for i, cell in enumerate(self._cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 if self.mode == "urs": | ||||
|                     feature = cell.forward_urs(feature) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_urs" | ||||
|                 elif self.mode == "select": | ||||
|                     feature = cell.forward_select(feature, alphas_cpu) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_select" | ||||
|                 elif self.mode == "joint": | ||||
|                     feature = cell.forward_joint(feature, alphas) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_joint" | ||||
|                 elif self.mode == "dynamic": | ||||
|                     feature = cell.forward_dynamic(feature, self.dynamic_cell) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_dynamic" | ||||
|                 elif self.mode == "gdas": | ||||
|                     feature = cell.forward_gdas(feature, alphas, index) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_gdas" | ||||
|                 elif self.mode == "gdas_v1": | ||||
|                     feature = cell.forward_gdas_v1(feature, alphas, index) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_gdas_v1" | ||||
|                 else: | ||||
|                     raise ValueError("invalid mode={:}".format(self.mode)) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|             if self.drop_path is not None: | ||||
|                 feature = drop_path(feature, self.drop_path) | ||||
|         if self.verbose and random.random() < 0.001: | ||||
|             print(verbose_str) | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|         return out, logits | ||||
							
								
								
									
										274
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/genotypes.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										274
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/genotypes.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,274 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from copy import deepcopy | ||||
|  | ||||
|  | ||||
| def get_combination(space, num): | ||||
|     combs = [] | ||||
|     for i in range(num): | ||||
|         if i == 0: | ||||
|             for func in space: | ||||
|                 combs.append([(func, i)]) | ||||
|         else: | ||||
|             new_combs = [] | ||||
|             for string in combs: | ||||
|                 for func in space: | ||||
|                     xstring = string + [(func, i)] | ||||
|                     new_combs.append(xstring) | ||||
|             combs = new_combs | ||||
|     return combs | ||||
|  | ||||
|  | ||||
| class Structure: | ||||
|     def __init__(self, genotype): | ||||
|         assert isinstance(genotype, list) or isinstance( | ||||
|             genotype, tuple | ||||
|         ), "invalid class of genotype : {:}".format(type(genotype)) | ||||
|         self.node_num = len(genotype) + 1 | ||||
|         self.nodes = [] | ||||
|         self.node_N = [] | ||||
|         for idx, node_info in enumerate(genotype): | ||||
|             assert isinstance(node_info, list) or isinstance( | ||||
|                 node_info, tuple | ||||
|             ), "invalid class of node_info : {:}".format(type(node_info)) | ||||
|             assert len(node_info) >= 1, "invalid length : {:}".format(len(node_info)) | ||||
|             for node_in in node_info: | ||||
|                 assert isinstance(node_in, list) or isinstance( | ||||
|                     node_in, tuple | ||||
|                 ), "invalid class of in-node : {:}".format(type(node_in)) | ||||
|                 assert ( | ||||
|                     len(node_in) == 2 and node_in[1] <= idx | ||||
|                 ), "invalid in-node : {:}".format(node_in) | ||||
|             self.node_N.append(len(node_info)) | ||||
|             self.nodes.append(tuple(deepcopy(node_info))) | ||||
|  | ||||
|     def tolist(self, remove_str): | ||||
|         # convert this class to the list, if remove_str is 'none', then remove the 'none' operation. | ||||
|         # note that we re-order the input node in this function | ||||
|         # return the-genotype-list and success [if unsuccess, it is not a connectivity] | ||||
|         genotypes = [] | ||||
|         for node_info in self.nodes: | ||||
|             node_info = list(node_info) | ||||
|             node_info = sorted(node_info, key=lambda x: (x[1], x[0])) | ||||
|             node_info = tuple(filter(lambda x: x[0] != remove_str, node_info)) | ||||
|             if len(node_info) == 0: | ||||
|                 return None, False | ||||
|             genotypes.append(node_info) | ||||
|         return genotypes, True | ||||
|  | ||||
|     def node(self, index): | ||||
|         assert index > 0 and index <= len(self), "invalid index={:} < {:}".format( | ||||
|             index, len(self) | ||||
|         ) | ||||
|         return self.nodes[index] | ||||
|  | ||||
|     def tostr(self): | ||||
|         strings = [] | ||||
|         for node_info in self.nodes: | ||||
|             string = "|".join([x[0] + "~{:}".format(x[1]) for x in node_info]) | ||||
|             string = "|{:}|".format(string) | ||||
|             strings.append(string) | ||||
|         return "+".join(strings) | ||||
|  | ||||
|     def check_valid(self): | ||||
|         nodes = {0: True} | ||||
|         for i, node_info in enumerate(self.nodes): | ||||
|             sums = [] | ||||
|             for op, xin in node_info: | ||||
|                 if op == "none" or nodes[xin] is False: | ||||
|                     x = False | ||||
|                 else: | ||||
|                     x = True | ||||
|                 sums.append(x) | ||||
|             nodes[i + 1] = sum(sums) > 0 | ||||
|         return nodes[len(self.nodes)] | ||||
|  | ||||
|     def to_unique_str(self, consider_zero=False): | ||||
|         # this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation | ||||
|         # two operations are special, i.e., none and skip_connect | ||||
|         nodes = {0: "0"} | ||||
|         for i_node, node_info in enumerate(self.nodes): | ||||
|             cur_node = [] | ||||
|             for op, xin in node_info: | ||||
|                 if consider_zero is None: | ||||
|                     x = "(" + nodes[xin] + ")" + "@{:}".format(op) | ||||
|                 elif consider_zero: | ||||
|                     if op == "none" or nodes[xin] == "#": | ||||
|                         x = "#"  # zero | ||||
|                     elif op == "skip_connect": | ||||
|                         x = nodes[xin] | ||||
|                     else: | ||||
|                         x = "(" + nodes[xin] + ")" + "@{:}".format(op) | ||||
|                 else: | ||||
|                     if op == "skip_connect": | ||||
|                         x = nodes[xin] | ||||
|                     else: | ||||
|                         x = "(" + nodes[xin] + ")" + "@{:}".format(op) | ||||
|                 cur_node.append(x) | ||||
|             nodes[i_node + 1] = "+".join(sorted(cur_node)) | ||||
|         return nodes[len(self.nodes)] | ||||
|  | ||||
|     def check_valid_op(self, op_names): | ||||
|         for node_info in self.nodes: | ||||
|             for inode_edge in node_info: | ||||
|                 # assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0]) | ||||
|                 if inode_edge[0] not in op_names: | ||||
|                     return False | ||||
|         return True | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({node_num} nodes with {node_info})".format( | ||||
|             name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.nodes) + 1 | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         return self.nodes[index] | ||||
|  | ||||
|     @staticmethod | ||||
|     def str2structure(xstr): | ||||
|         if isinstance(xstr, Structure): | ||||
|             return xstr | ||||
|         assert isinstance(xstr, str), "must take string (not {:}) as input".format( | ||||
|             type(xstr) | ||||
|         ) | ||||
|         nodestrs = xstr.split("+") | ||||
|         genotypes = [] | ||||
|         for i, node_str in enumerate(nodestrs): | ||||
|             inputs = list(filter(lambda x: x != "", node_str.split("|"))) | ||||
|             for xinput in inputs: | ||||
|                 assert len(xinput.split("~")) == 2, "invalid input length : {:}".format( | ||||
|                     xinput | ||||
|                 ) | ||||
|             inputs = (xi.split("~") for xi in inputs) | ||||
|             input_infos = tuple((op, int(IDX)) for (op, IDX) in inputs) | ||||
|             genotypes.append(input_infos) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     @staticmethod | ||||
|     def str2fullstructure(xstr, default_name="none"): | ||||
|         assert isinstance(xstr, str), "must take string (not {:}) as input".format( | ||||
|             type(xstr) | ||||
|         ) | ||||
|         nodestrs = xstr.split("+") | ||||
|         genotypes = [] | ||||
|         for i, node_str in enumerate(nodestrs): | ||||
|             inputs = list(filter(lambda x: x != "", node_str.split("|"))) | ||||
|             for xinput in inputs: | ||||
|                 assert len(xinput.split("~")) == 2, "invalid input length : {:}".format( | ||||
|                     xinput | ||||
|                 ) | ||||
|             inputs = (xi.split("~") for xi in inputs) | ||||
|             input_infos = list((op, int(IDX)) for (op, IDX) in inputs) | ||||
|             all_in_nodes = list(x[1] for x in input_infos) | ||||
|             for j in range(i): | ||||
|                 if j not in all_in_nodes: | ||||
|                     input_infos.append((default_name, j)) | ||||
|             node_info = sorted(input_infos, key=lambda x: (x[1], x[0])) | ||||
|             genotypes.append(tuple(node_info)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     @staticmethod | ||||
|     def gen_all(search_space, num, return_ori): | ||||
|         assert isinstance(search_space, list) or isinstance( | ||||
|             search_space, tuple | ||||
|         ), "invalid class of search-space : {:}".format(type(search_space)) | ||||
|         assert ( | ||||
|             num >= 2 | ||||
|         ), "There should be at least two nodes in a neural cell instead of {:}".format( | ||||
|             num | ||||
|         ) | ||||
|         all_archs = get_combination(search_space, 1) | ||||
|         for i, arch in enumerate(all_archs): | ||||
|             all_archs[i] = [tuple(arch)] | ||||
|  | ||||
|         for inode in range(2, num): | ||||
|             cur_nodes = get_combination(search_space, inode) | ||||
|             new_all_archs = [] | ||||
|             for previous_arch in all_archs: | ||||
|                 for cur_node in cur_nodes: | ||||
|                     new_all_archs.append(previous_arch + [tuple(cur_node)]) | ||||
|             all_archs = new_all_archs | ||||
|         if return_ori: | ||||
|             return all_archs | ||||
|         else: | ||||
|             return [Structure(x) for x in all_archs] | ||||
|  | ||||
|  | ||||
| ResNet_CODE = Structure( | ||||
|     [ | ||||
|         (("nor_conv_3x3", 0),),  # node-1 | ||||
|         (("nor_conv_3x3", 1),),  # node-2 | ||||
|         (("skip_connect", 0), ("skip_connect", 2)), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| AllConv3x3_CODE = Structure( | ||||
|     [ | ||||
|         (("nor_conv_3x3", 0),),  # node-1 | ||||
|         (("nor_conv_3x3", 0), ("nor_conv_3x3", 1)),  # node-2 | ||||
|         (("nor_conv_3x3", 0), ("nor_conv_3x3", 1), ("nor_conv_3x3", 2)), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| AllFull_CODE = Structure( | ||||
|     [ | ||||
|         ( | ||||
|             ("skip_connect", 0), | ||||
|             ("nor_conv_1x1", 0), | ||||
|             ("nor_conv_3x3", 0), | ||||
|             ("avg_pool_3x3", 0), | ||||
|         ),  # node-1 | ||||
|         ( | ||||
|             ("skip_connect", 0), | ||||
|             ("nor_conv_1x1", 0), | ||||
|             ("nor_conv_3x3", 0), | ||||
|             ("avg_pool_3x3", 0), | ||||
|             ("skip_connect", 1), | ||||
|             ("nor_conv_1x1", 1), | ||||
|             ("nor_conv_3x3", 1), | ||||
|             ("avg_pool_3x3", 1), | ||||
|         ),  # node-2 | ||||
|         ( | ||||
|             ("skip_connect", 0), | ||||
|             ("nor_conv_1x1", 0), | ||||
|             ("nor_conv_3x3", 0), | ||||
|             ("avg_pool_3x3", 0), | ||||
|             ("skip_connect", 1), | ||||
|             ("nor_conv_1x1", 1), | ||||
|             ("nor_conv_3x3", 1), | ||||
|             ("avg_pool_3x3", 1), | ||||
|             ("skip_connect", 2), | ||||
|             ("nor_conv_1x1", 2), | ||||
|             ("nor_conv_3x3", 2), | ||||
|             ("avg_pool_3x3", 2), | ||||
|         ), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| AllConv1x1_CODE = Structure( | ||||
|     [ | ||||
|         (("nor_conv_1x1", 0),),  # node-1 | ||||
|         (("nor_conv_1x1", 0), ("nor_conv_1x1", 1)),  # node-2 | ||||
|         (("nor_conv_1x1", 0), ("nor_conv_1x1", 1), ("nor_conv_1x1", 2)), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| AllIdentity_CODE = Structure( | ||||
|     [ | ||||
|         (("skip_connect", 0),),  # node-1 | ||||
|         (("skip_connect", 0), ("skip_connect", 1)),  # node-2 | ||||
|         (("skip_connect", 0), ("skip_connect", 1), ("skip_connect", 2)), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| architectures = { | ||||
|     "resnet": ResNet_CODE, | ||||
|     "all_c3x3": AllConv3x3_CODE, | ||||
|     "all_c1x1": AllConv1x1_CODE, | ||||
|     "all_idnt": AllIdentity_CODE, | ||||
|     "all_full": AllFull_CODE, | ||||
| } | ||||
							
								
								
									
										267
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/search_cells.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										267
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/search_cells.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,267 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, random, torch | ||||
| import warnings | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import OPS | ||||
|  | ||||
|  | ||||
| # This module is used for NAS-Bench-201, represents a small search space with a complete DAG | ||||
| class NAS201SearchCell(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C_in, | ||||
|         C_out, | ||||
|         stride, | ||||
|         max_nodes, | ||||
|         op_names, | ||||
|         affine=False, | ||||
|         track_running_stats=True, | ||||
|     ): | ||||
|         super(NAS201SearchCell, self).__init__() | ||||
|  | ||||
|         self.op_names = deepcopy(op_names) | ||||
|         self.edges = nn.ModuleDict() | ||||
|         self.max_nodes = max_nodes | ||||
|         self.in_dim = C_in | ||||
|         self.out_dim = C_out | ||||
|         for i in range(1, max_nodes): | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 if j == 0: | ||||
|                     xlists = [ | ||||
|                         OPS[op_name](C_in, C_out, stride, affine, track_running_stats) | ||||
|                         for op_name in op_names | ||||
|                     ] | ||||
|                 else: | ||||
|                     xlists = [ | ||||
|                         OPS[op_name](C_in, C_out, 1, affine, track_running_stats) | ||||
|                         for op_name in op_names | ||||
|                     ] | ||||
|                 self.edges[node_str] = nn.ModuleList(xlists) | ||||
|         self.edge_keys = sorted(list(self.edges.keys())) | ||||
|         self.edge2index = {key: i for i, key in enumerate(self.edge_keys)} | ||||
|         self.num_edges = len(self.edges) | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         string = "info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}".format( | ||||
|             **self.__dict__ | ||||
|         ) | ||||
|         return string | ||||
|  | ||||
|     def forward(self, inputs, weightss): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 inter_nodes.append( | ||||
|                     sum( | ||||
|                         layer(nodes[j]) * w | ||||
|                         for layer, w in zip(self.edges[node_str], weights) | ||||
|                     ) | ||||
|                 ) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # GDAS | ||||
|     def forward_gdas(self, inputs, hardwts, index): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = hardwts[self.edge2index[node_str]] | ||||
|                 argmaxs = index[self.edge2index[node_str]].item() | ||||
|                 weigsum = sum( | ||||
|                     weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] | ||||
|                     for _ie, edge in enumerate(self.edges[node_str]) | ||||
|                 ) | ||||
|                 inter_nodes.append(weigsum) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # GDAS Variant: https://github.com/D-X-Y/AutoDL-Projects/issues/119 | ||||
|     def forward_gdas_v1(self, inputs, hardwts, index): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = hardwts[self.edge2index[node_str]] | ||||
|                 argmaxs = index[self.edge2index[node_str]].item() | ||||
|                 weigsum = weights[argmaxs] * self.edges[node_str](nodes[j]) | ||||
|                 inter_nodes.append(weigsum) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # joint | ||||
|     def forward_joint(self, inputs, weightss): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 # aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel() | ||||
|                 aggregation = sum( | ||||
|                     layer(nodes[j]) * w | ||||
|                     for layer, w in zip(self.edges[node_str], weights) | ||||
|                 ) | ||||
|                 inter_nodes.append(aggregation) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # uniform random sampling per iteration, SETN | ||||
|     def forward_urs(self, inputs): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             while True:  # to avoid select zero for all ops | ||||
|                 sops, has_non_zero = [], False | ||||
|                 for j in range(i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     candidates = self.edges[node_str] | ||||
|                     select_op = random.choice(candidates) | ||||
|                     sops.append(select_op) | ||||
|                     if not hasattr(select_op, "is_zero") or select_op.is_zero is False: | ||||
|                         has_non_zero = True | ||||
|                 if has_non_zero: | ||||
|                     break | ||||
|             inter_nodes = [] | ||||
|             for j, select_op in enumerate(sops): | ||||
|                 inter_nodes.append(select_op(nodes[j])) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # select the argmax | ||||
|     def forward_select(self, inputs, weightss): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 inter_nodes.append( | ||||
|                     self.edges[node_str][weights.argmax().item()](nodes[j]) | ||||
|                 ) | ||||
|                 # inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) ) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # forward with a specific structure | ||||
|     def forward_dynamic(self, inputs, structure): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             cur_op_node = structure.nodes[i - 1] | ||||
|             inter_nodes = [] | ||||
|             for op_name, j in cur_op_node: | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op_index = self.op_names.index(op_name) | ||||
|                 inter_nodes.append(self.edges[node_str][op_index](nodes[j])) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|  | ||||
| # Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018 | ||||
|  | ||||
|  | ||||
| class MixedOp(nn.Module): | ||||
|     def __init__(self, space, C, stride, affine, track_running_stats): | ||||
|         super(MixedOp, self).__init__() | ||||
|         self._ops = nn.ModuleList() | ||||
|         for primitive in space: | ||||
|             op = OPS[primitive](C, C, stride, affine, track_running_stats) | ||||
|             self._ops.append(op) | ||||
|  | ||||
|     def forward_gdas(self, x, weights, index): | ||||
|         return self._ops[index](x) * weights[index] | ||||
|  | ||||
|     def forward_darts(self, x, weights): | ||||
|         return sum(w * op(x) for w, op in zip(weights, self._ops)) | ||||
|  | ||||
|  | ||||
| class NASNetSearchCell(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         space, | ||||
|         steps, | ||||
|         multiplier, | ||||
|         C_prev_prev, | ||||
|         C_prev, | ||||
|         C, | ||||
|         reduction, | ||||
|         reduction_prev, | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ): | ||||
|         super(NASNetSearchCell, self).__init__() | ||||
|         self.reduction = reduction | ||||
|         self.op_names = deepcopy(space) | ||||
|         if reduction_prev: | ||||
|             self.preprocess0 = OPS["skip_connect"]( | ||||
|                 C_prev_prev, C, 2, affine, track_running_stats | ||||
|             ) | ||||
|         else: | ||||
|             self.preprocess0 = OPS["nor_conv_1x1"]( | ||||
|                 C_prev_prev, C, 1, affine, track_running_stats | ||||
|             ) | ||||
|         self.preprocess1 = OPS["nor_conv_1x1"]( | ||||
|             C_prev, C, 1, affine, track_running_stats | ||||
|         ) | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|  | ||||
|         self._ops = nn.ModuleList() | ||||
|         self.edges = nn.ModuleDict() | ||||
|         for i in range(self._steps): | ||||
|             for j in range(2 + i): | ||||
|                 node_str = "{:}<-{:}".format( | ||||
|                     i, j | ||||
|                 )  # indicate the edge from node-(j) to node-(i+2) | ||||
|                 stride = 2 if reduction and j < 2 else 1 | ||||
|                 op = MixedOp(space, C, stride, affine, track_running_stats) | ||||
|                 self.edges[node_str] = op | ||||
|         self.edge_keys = sorted(list(self.edges.keys())) | ||||
|         self.edge2index = {key: i for i, key in enumerate(self.edge_keys)} | ||||
|         self.num_edges = len(self.edges) | ||||
|  | ||||
|     @property | ||||
|     def multiplier(self): | ||||
|         return self._multiplier | ||||
|  | ||||
|     def forward_gdas(self, s0, s1, weightss, indexs): | ||||
|         s0 = self.preprocess0(s0) | ||||
|         s1 = self.preprocess1(s1) | ||||
|  | ||||
|         states = [s0, s1] | ||||
|         for i in range(self._steps): | ||||
|             clist = [] | ||||
|             for j, h in enumerate(states): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op = self.edges[node_str] | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 index = indexs[self.edge2index[node_str]].item() | ||||
|                 clist.append(op.forward_gdas(h, weights, index)) | ||||
|             states.append(sum(clist)) | ||||
|  | ||||
|         return torch.cat(states[-self._multiplier :], dim=1) | ||||
|  | ||||
|     def forward_darts(self, s0, s1, weightss): | ||||
|         s0 = self.preprocess0(s0) | ||||
|         s1 = self.preprocess1(s1) | ||||
|  | ||||
|         states = [s0, s1] | ||||
|         for i in range(self._steps): | ||||
|             clist = [] | ||||
|             for j, h in enumerate(states): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op = self.edges[node_str] | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 clist.append(op.forward_darts(h, weights)) | ||||
|             states.append(sum(clist)) | ||||
|  | ||||
|         return torch.cat(states[-self._multiplier :], dim=1) | ||||
| @@ -0,0 +1,122 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ######################################################## | ||||
| # DARTS: Differentiable Architecture Search, ICLR 2019 # | ||||
| ######################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkDarts(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkDarts, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_parameters] | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             return "arch-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def genotype(self): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 with torch.no_grad(): | ||||
|                     weights = self.arch_parameters[self.edge2index[node_str]] | ||||
|                     op_name = self.op_names[weights.argmax().item()] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         alphas = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 feature = cell(feature, alphas) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
| @@ -0,0 +1,178 @@ | ||||
| #################### | ||||
| # DARTS, ICLR 2019 # | ||||
| #################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from typing import List, Text, Dict | ||||
| from .search_cells import NASNetSearchCell as SearchCell | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkDARTS(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C: int, | ||||
|         N: int, | ||||
|         steps: int, | ||||
|         multiplier: int, | ||||
|         stem_multiplier: int, | ||||
|         num_classes: int, | ||||
|         search_space: List[Text], | ||||
|         affine: bool, | ||||
|         track_running_stats: bool, | ||||
|     ): | ||||
|         super(NASNetworkDARTS, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|         num_edge, edge2index = None, None | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|  | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             cell = SearchCell( | ||||
|                 search_space, | ||||
|                 steps, | ||||
|                 multiplier, | ||||
|                 C_prev_prev, | ||||
|                 C_prev, | ||||
|                 C_curr, | ||||
|                 reduction, | ||||
|                 reduction_prev, | ||||
|                 affine, | ||||
|                 track_running_stats, | ||||
|             ) | ||||
|             if num_edge is None: | ||||
|                 num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|             else: | ||||
|                 assert ( | ||||
|                     num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                 ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_normal_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.arch_reduce_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|  | ||||
|     def get_weights(self) -> List[torch.nn.Parameter]: | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def get_alphas(self) -> List[torch.nn.Parameter]: | ||||
|         return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|     def show_alphas(self) -> Text: | ||||
|         with torch.no_grad(): | ||||
|             A = "arch-normal-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|             B = "arch-reduce-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|         return "{:}\n{:}".format(A, B) | ||||
|  | ||||
|     def get_message(self) -> Text: | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self) -> Text: | ||||
|         return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def genotype(self) -> Dict[Text, List]: | ||||
|         def _parse(weights): | ||||
|             gene = [] | ||||
|             for i in range(self._steps): | ||||
|                 edges = [] | ||||
|                 for j in range(2 + i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     ws = weights[self.edge2index[node_str]] | ||||
|                     for k, op_name in enumerate(self.op_names): | ||||
|                         if op_name == "none": | ||||
|                             continue | ||||
|                         edges.append((op_name, j, ws[k])) | ||||
|                 # (TODO) xuanyidong: | ||||
|                 # Here the selected two edges might come from the same input node. | ||||
|                 # And this case could be a problem that two edges will collapse into a single one | ||||
|                 # due to our assumption -- at most one edge from an input node during evaluation. | ||||
|                 edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|                 selected_edges = edges[:2] | ||||
|                 gene.append(tuple(selected_edges)) | ||||
|             return gene | ||||
|  | ||||
|         with torch.no_grad(): | ||||
|             gene_normal = _parse( | ||||
|                 torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|             gene_reduce = _parse( | ||||
|                 torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|         return { | ||||
|             "normal": gene_normal, | ||||
|             "normal_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|             "reduce": gene_reduce, | ||||
|             "reduce_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|         } | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1) | ||||
|         reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1) | ||||
|  | ||||
|         s0 = s1 = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if cell.reduction: | ||||
|                 ww = reduce_w | ||||
|             else: | ||||
|                 ww = normal_w | ||||
|             s0, s1 = s1, cell.forward_darts(s0, s1, ww) | ||||
|         out = self.lastact(s1) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										114
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/search_model_enas.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										114
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/search_model_enas.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,114 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ########################################################################## | ||||
| # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | ||||
| ########################################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
| from .search_model_enas_utils import Controller | ||||
|  | ||||
|  | ||||
| class TinyNetworkENAS(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkENAS, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         # to maintain the sampled architecture | ||||
|         self.sampled_arch = None | ||||
|  | ||||
|     def update_arch(self, _arch): | ||||
|         if _arch is None: | ||||
|             self.sampled_arch = None | ||||
|         elif isinstance(_arch, Structure): | ||||
|             self.sampled_arch = _arch | ||||
|         elif isinstance(_arch, (list, tuple)): | ||||
|             genotypes = [] | ||||
|             for i in range(1, self.max_nodes): | ||||
|                 xlist = [] | ||||
|                 for j in range(i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     op_index = _arch[self.edge2index[node_str]] | ||||
|                     op_name = self.op_names[op_index] | ||||
|                     xlist.append((op_name, j)) | ||||
|                 genotypes.append(tuple(xlist)) | ||||
|             self.sampled_arch = Structure(genotypes) | ||||
|         else: | ||||
|             raise ValueError("invalid type of input architecture : {:}".format(_arch)) | ||||
|         return self.sampled_arch | ||||
|  | ||||
|     def create_controller(self): | ||||
|         return Controller(len(self.edge2index), len(self.op_names)) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 feature = cell.forward_dynamic(feature, self.sampled_arch) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
| @@ -0,0 +1,74 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ########################################################################## | ||||
| # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | ||||
| ########################################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from torch.distributions.categorical import Categorical | ||||
|  | ||||
|  | ||||
| class Controller(nn.Module): | ||||
|     # we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py | ||||
|     def __init__( | ||||
|         self, | ||||
|         num_edge, | ||||
|         num_ops, | ||||
|         lstm_size=32, | ||||
|         lstm_num_layers=2, | ||||
|         tanh_constant=2.5, | ||||
|         temperature=5.0, | ||||
|     ): | ||||
|         super(Controller, self).__init__() | ||||
|         # assign the attributes | ||||
|         self.num_edge = num_edge | ||||
|         self.num_ops = num_ops | ||||
|         self.lstm_size = lstm_size | ||||
|         self.lstm_N = lstm_num_layers | ||||
|         self.tanh_constant = tanh_constant | ||||
|         self.temperature = temperature | ||||
|         # create parameters | ||||
|         self.register_parameter( | ||||
|             "input_vars", nn.Parameter(torch.Tensor(1, 1, lstm_size)) | ||||
|         ) | ||||
|         self.w_lstm = nn.LSTM( | ||||
|             input_size=self.lstm_size, | ||||
|             hidden_size=self.lstm_size, | ||||
|             num_layers=self.lstm_N, | ||||
|         ) | ||||
|         self.w_embd = nn.Embedding(self.num_ops, self.lstm_size) | ||||
|         self.w_pred = nn.Linear(self.lstm_size, self.num_ops) | ||||
|  | ||||
|         nn.init.uniform_(self.input_vars, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_embd.weight, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_pred.weight, -0.1, 0.1) | ||||
|  | ||||
|     def forward(self): | ||||
|  | ||||
|         inputs, h0 = self.input_vars, None | ||||
|         log_probs, entropys, sampled_arch = [], [], [] | ||||
|         for iedge in range(self.num_edge): | ||||
|             outputs, h0 = self.w_lstm(inputs, h0) | ||||
|  | ||||
|             logits = self.w_pred(outputs) | ||||
|             logits = logits / self.temperature | ||||
|             logits = self.tanh_constant * torch.tanh(logits) | ||||
|             # distribution | ||||
|             op_distribution = Categorical(logits=logits) | ||||
|             op_index = op_distribution.sample() | ||||
|             sampled_arch.append(op_index.item()) | ||||
|  | ||||
|             op_log_prob = op_distribution.log_prob(op_index) | ||||
|             log_probs.append(op_log_prob.view(-1)) | ||||
|             op_entropy = op_distribution.entropy() | ||||
|             entropys.append(op_entropy.view(-1)) | ||||
|  | ||||
|             # obtain the input embedding for the next step | ||||
|             inputs = self.w_embd(op_index) | ||||
|         return ( | ||||
|             torch.sum(torch.cat(log_probs)), | ||||
|             torch.sum(torch.cat(entropys)), | ||||
|             sampled_arch, | ||||
|         ) | ||||
							
								
								
									
										142
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/search_model_gdas.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										142
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/search_model_gdas.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,142 @@ | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkGDAS(nn.Module): | ||||
|  | ||||
|     # def __init__(self, C, N, max_nodes, num_classes, search_space, affine=False, track_running_stats=True): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkGDAS, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.tau = 10 | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def set_tau(self, tau): | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_tau(self): | ||||
|         return self.tau | ||||
|  | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_parameters] | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             return "arch-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def genotype(self): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 with torch.no_grad(): | ||||
|                     weights = self.arch_parameters[self.edge2index[node_str]] | ||||
|                     op_name = self.op_names[weights.argmax().item()] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         while True: | ||||
|             gumbels = -torch.empty_like(self.arch_parameters).exponential_().log() | ||||
|             logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau | ||||
|             probs = nn.functional.softmax(logits, dim=1) | ||||
|             index = probs.max(-1, keepdim=True)[1] | ||||
|             one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|             hardwts = one_h - probs.detach() + probs | ||||
|             if ( | ||||
|                 (torch.isinf(gumbels).any()) | ||||
|                 or (torch.isinf(probs).any()) | ||||
|                 or (torch.isnan(probs).any()) | ||||
|             ): | ||||
|                 continue | ||||
|             else: | ||||
|                 break | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 feature = cell.forward_gdas(feature, hardwts, index) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
| @@ -0,0 +1,200 @@ | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
|  | ||||
| from .search_cells import NASNetSearchCell as SearchCell | ||||
| from ..cell_operations import RAW_OP_CLASSES | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkGDAS_FRC(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C, | ||||
|         N, | ||||
|         steps, | ||||
|         multiplier, | ||||
|         stem_multiplier, | ||||
|         num_classes, | ||||
|         search_space, | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ): | ||||
|         super(NASNetworkGDAS_FRC, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|         num_edge, edge2index = None, None | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|  | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = RAW_OP_CLASSES["gdas_reduction"]( | ||||
|                     C_prev_prev, | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     reduction_prev, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     search_space, | ||||
|                     steps, | ||||
|                     multiplier, | ||||
|                     C_prev_prev, | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     reduction, | ||||
|                     reduction_prev, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|             if num_edge is None: | ||||
|                 num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|             else: | ||||
|                 assert ( | ||||
|                     reduction | ||||
|                     or num_edge == cell.num_edges | ||||
|                     and edge2index == cell.edge2index | ||||
|                 ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = ( | ||||
|                 C_prev, | ||||
|                 cell.multiplier * C_curr, | ||||
|                 reduction, | ||||
|             ) | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.tau = 10 | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def set_tau(self, tau): | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_tau(self): | ||||
|         return self.tau | ||||
|  | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_parameters] | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             A = "arch-normal-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|         return "{:}".format(A) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def genotype(self): | ||||
|         def _parse(weights): | ||||
|             gene = [] | ||||
|             for i in range(self._steps): | ||||
|                 edges = [] | ||||
|                 for j in range(2 + i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     ws = weights[self.edge2index[node_str]] | ||||
|                     for k, op_name in enumerate(self.op_names): | ||||
|                         if op_name == "none": | ||||
|                             continue | ||||
|                         edges.append((op_name, j, ws[k])) | ||||
|                 edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|                 selected_edges = edges[:2] | ||||
|                 gene.append(tuple(selected_edges)) | ||||
|             return gene | ||||
|  | ||||
|         with torch.no_grad(): | ||||
|             gene_normal = _parse( | ||||
|                 torch.softmax(self.arch_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|         return { | ||||
|             "normal": gene_normal, | ||||
|             "normal_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|         } | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         def get_gumbel_prob(xins): | ||||
|             while True: | ||||
|                 gumbels = -torch.empty_like(xins).exponential_().log() | ||||
|                 logits = (xins.log_softmax(dim=1) + gumbels) / self.tau | ||||
|                 probs = nn.functional.softmax(logits, dim=1) | ||||
|                 index = probs.max(-1, keepdim=True)[1] | ||||
|                 one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|                 hardwts = one_h - probs.detach() + probs | ||||
|                 if ( | ||||
|                     (torch.isinf(gumbels).any()) | ||||
|                     or (torch.isinf(probs).any()) | ||||
|                     or (torch.isnan(probs).any()) | ||||
|                 ): | ||||
|                     continue | ||||
|                 else: | ||||
|                     break | ||||
|             return hardwts, index | ||||
|  | ||||
|         hardwts, index = get_gumbel_prob(self.arch_parameters) | ||||
|  | ||||
|         s0 = s1 = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if cell.reduction: | ||||
|                 s0, s1 = s1, cell(s0, s1) | ||||
|             else: | ||||
|                 s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|         out = self.lastact(s1) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
| @@ -0,0 +1,197 @@ | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from .search_cells import NASNetSearchCell as SearchCell | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkGDAS(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C, | ||||
|         N, | ||||
|         steps, | ||||
|         multiplier, | ||||
|         stem_multiplier, | ||||
|         num_classes, | ||||
|         search_space, | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ): | ||||
|         super(NASNetworkGDAS, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|         num_edge, edge2index = None, None | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|  | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             cell = SearchCell( | ||||
|                 search_space, | ||||
|                 steps, | ||||
|                 multiplier, | ||||
|                 C_prev_prev, | ||||
|                 C_prev, | ||||
|                 C_curr, | ||||
|                 reduction, | ||||
|                 reduction_prev, | ||||
|                 affine, | ||||
|                 track_running_stats, | ||||
|             ) | ||||
|             if num_edge is None: | ||||
|                 num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|             else: | ||||
|                 assert ( | ||||
|                     num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                 ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_normal_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.arch_reduce_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.tau = 10 | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def set_tau(self, tau): | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_tau(self): | ||||
|         return self.tau | ||||
|  | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             A = "arch-normal-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|             B = "arch-reduce-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|         return "{:}\n{:}".format(A, B) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def genotype(self): | ||||
|         def _parse(weights): | ||||
|             gene = [] | ||||
|             for i in range(self._steps): | ||||
|                 edges = [] | ||||
|                 for j in range(2 + i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     ws = weights[self.edge2index[node_str]] | ||||
|                     for k, op_name in enumerate(self.op_names): | ||||
|                         if op_name == "none": | ||||
|                             continue | ||||
|                         edges.append((op_name, j, ws[k])) | ||||
|                 edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|                 selected_edges = edges[:2] | ||||
|                 gene.append(tuple(selected_edges)) | ||||
|             return gene | ||||
|  | ||||
|         with torch.no_grad(): | ||||
|             gene_normal = _parse( | ||||
|                 torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|             gene_reduce = _parse( | ||||
|                 torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|         return { | ||||
|             "normal": gene_normal, | ||||
|             "normal_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|             "reduce": gene_reduce, | ||||
|             "reduce_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|         } | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         def get_gumbel_prob(xins): | ||||
|             while True: | ||||
|                 gumbels = -torch.empty_like(xins).exponential_().log() | ||||
|                 logits = (xins.log_softmax(dim=1) + gumbels) / self.tau | ||||
|                 probs = nn.functional.softmax(logits, dim=1) | ||||
|                 index = probs.max(-1, keepdim=True)[1] | ||||
|                 one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|                 hardwts = one_h - probs.detach() + probs | ||||
|                 if ( | ||||
|                     (torch.isinf(gumbels).any()) | ||||
|                     or (torch.isinf(probs).any()) | ||||
|                     or (torch.isnan(probs).any()) | ||||
|                 ): | ||||
|                     continue | ||||
|                 else: | ||||
|                     break | ||||
|             return hardwts, index | ||||
|  | ||||
|         normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters) | ||||
|         reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters) | ||||
|  | ||||
|         s0 = s1 = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if cell.reduction: | ||||
|                 hardwts, index = reduce_hardwts, reduce_index | ||||
|             else: | ||||
|                 hardwts, index = normal_hardwts, normal_index | ||||
|             s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|         out = self.lastact(s1) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
| @@ -0,0 +1,102 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ############################################################################## | ||||
| # Random Search and Reproducibility for Neural Architecture Search, UAI 2019 # | ||||
| ############################################################################## | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkRANDOM(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkRANDOM, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_cache = None | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def random_genotype(self, set_cache): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op_name = random.choice(self.op_names) | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         arch = Structure(genotypes) | ||||
|         if set_cache: | ||||
|             self.arch_cache = arch | ||||
|         return arch | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 feature = cell.forward_dynamic(feature, self.arch_cache) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|         return out, logits | ||||
							
								
								
									
										178
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/search_model_setn.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										178
									
								
								AutoDL-Projects/xautodl/models/cell_searchs/search_model_setn.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,178 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ###################################################################################### | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # | ||||
| ###################################################################################### | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkSETN(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkSETN, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.mode = "urs" | ||||
|         self.dynamic_cell = None | ||||
|  | ||||
|     def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|         assert mode in ["urs", "joint", "select", "dynamic"] | ||||
|         self.mode = mode | ||||
|         if mode == "dynamic": | ||||
|             self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|         else: | ||||
|             self.dynamic_cell = None | ||||
|  | ||||
|     def get_cal_mode(self): | ||||
|         return self.mode | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_parameters] | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def genotype(self): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 with torch.no_grad(): | ||||
|                     weights = self.arch_parameters[self.edge2index[node_str]] | ||||
|                     op_name = self.op_names[weights.argmax().item()] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def dync_genotype(self, use_random=False): | ||||
|         genotypes = [] | ||||
|         with torch.no_grad(): | ||||
|             alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 if use_random: | ||||
|                     op_name = random.choice(self.op_names) | ||||
|                 else: | ||||
|                     weights = alphas_cpu[self.edge2index[node_str]] | ||||
|                     op_index = torch.multinomial(weights, 1).item() | ||||
|                     op_name = self.op_names[op_index] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def get_log_prob(self, arch): | ||||
|         with torch.no_grad(): | ||||
|             logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) | ||||
|         select_logits = [] | ||||
|         for i, node_info in enumerate(arch.nodes): | ||||
|             for op, xin in node_info: | ||||
|                 node_str = "{:}<-{:}".format(i + 1, xin) | ||||
|                 op_index = self.op_names.index(op) | ||||
|                 select_logits.append(logits[self.edge2index[node_str], op_index]) | ||||
|         return sum(select_logits).item() | ||||
|  | ||||
|     def return_topK(self, K): | ||||
|         archs = Structure.gen_all(self.op_names, self.max_nodes, False) | ||||
|         pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||
|         if K < 0 or K >= len(archs): | ||||
|             K = len(archs) | ||||
|         sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|         return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|         return return_pairs | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         alphas = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|         with torch.no_grad(): | ||||
|             alphas_cpu = alphas.detach().cpu() | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 if self.mode == "urs": | ||||
|                     feature = cell.forward_urs(feature) | ||||
|                 elif self.mode == "select": | ||||
|                     feature = cell.forward_select(feature, alphas_cpu) | ||||
|                 elif self.mode == "joint": | ||||
|                     feature = cell.forward_joint(feature, alphas) | ||||
|                 elif self.mode == "dynamic": | ||||
|                     feature = cell.forward_dynamic(feature, self.dynamic_cell) | ||||
|                 else: | ||||
|                     raise ValueError("invalid mode={:}".format(self.mode)) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
| @@ -0,0 +1,205 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ###################################################################################### | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # | ||||
| ###################################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from typing import List, Text, Dict | ||||
| from .search_cells import NASNetSearchCell as SearchCell | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkSETN(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C: int, | ||||
|         N: int, | ||||
|         steps: int, | ||||
|         multiplier: int, | ||||
|         stem_multiplier: int, | ||||
|         num_classes: int, | ||||
|         search_space: List[Text], | ||||
|         affine: bool, | ||||
|         track_running_stats: bool, | ||||
|     ): | ||||
|         super(NASNetworkSETN, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|         num_edge, edge2index = None, None | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|  | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             cell = SearchCell( | ||||
|                 search_space, | ||||
|                 steps, | ||||
|                 multiplier, | ||||
|                 C_prev_prev, | ||||
|                 C_prev, | ||||
|                 C_curr, | ||||
|                 reduction, | ||||
|                 reduction_prev, | ||||
|                 affine, | ||||
|                 track_running_stats, | ||||
|             ) | ||||
|             if num_edge is None: | ||||
|                 num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|             else: | ||||
|                 assert ( | ||||
|                     num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                 ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_normal_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.arch_reduce_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.mode = "urs" | ||||
|         self.dynamic_cell = None | ||||
|  | ||||
|     def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|         assert mode in ["urs", "joint", "select", "dynamic"] | ||||
|         self.mode = mode | ||||
|         if mode == "dynamic": | ||||
|             self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|         else: | ||||
|             self.dynamic_cell = None | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             A = "arch-normal-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|             B = "arch-reduce-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|         return "{:}\n{:}".format(A, B) | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def dync_genotype(self, use_random=False): | ||||
|         genotypes = [] | ||||
|         with torch.no_grad(): | ||||
|             alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 if use_random: | ||||
|                     op_name = random.choice(self.op_names) | ||||
|                 else: | ||||
|                     weights = alphas_cpu[self.edge2index[node_str]] | ||||
|                     op_index = torch.multinomial(weights, 1).item() | ||||
|                     op_name = self.op_names[op_index] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def genotype(self): | ||||
|         def _parse(weights): | ||||
|             gene = [] | ||||
|             for i in range(self._steps): | ||||
|                 edges = [] | ||||
|                 for j in range(2 + i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     ws = weights[self.edge2index[node_str]] | ||||
|                     for k, op_name in enumerate(self.op_names): | ||||
|                         if op_name == "none": | ||||
|                             continue | ||||
|                         edges.append((op_name, j, ws[k])) | ||||
|                 edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|                 selected_edges = edges[:2] | ||||
|                 gene.append(tuple(selected_edges)) | ||||
|             return gene | ||||
|  | ||||
|         with torch.no_grad(): | ||||
|             gene_normal = _parse( | ||||
|                 torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|             gene_reduce = _parse( | ||||
|                 torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|         return { | ||||
|             "normal": gene_normal, | ||||
|             "normal_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|             "reduce": gene_reduce, | ||||
|             "reduce_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|         } | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1) | ||||
|         reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1) | ||||
|  | ||||
|         s0 = s1 = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             # [TODO] | ||||
|             raise NotImplementedError | ||||
|             if cell.reduction: | ||||
|                 hardwts, index = reduce_hardwts, reduce_index | ||||
|             else: | ||||
|                 hardwts, index = normal_hardwts, normal_index | ||||
|             s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|         out = self.lastact(s1) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										74
									
								
								AutoDL-Projects/xautodl/models/clone_weights.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								AutoDL-Projects/xautodl/models/clone_weights.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,74 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def copy_conv(module, init): | ||||
|     assert isinstance(module, nn.Conv2d), "invalid module : {:}".format(module) | ||||
|     assert isinstance(init, nn.Conv2d), "invalid module : {:}".format(init) | ||||
|     new_i, new_o = module.in_channels, module.out_channels | ||||
|     module.weight.copy_(init.weight.detach()[:new_o, :new_i]) | ||||
|     if module.bias is not None: | ||||
|         module.bias.copy_(init.bias.detach()[:new_o]) | ||||
|  | ||||
|  | ||||
| def copy_bn(module, init): | ||||
|     assert isinstance(module, nn.BatchNorm2d), "invalid module : {:}".format(module) | ||||
|     assert isinstance(init, nn.BatchNorm2d), "invalid module : {:}".format(init) | ||||
|     num_features = module.num_features | ||||
|     if module.weight is not None: | ||||
|         module.weight.copy_(init.weight.detach()[:num_features]) | ||||
|     if module.bias is not None: | ||||
|         module.bias.copy_(init.bias.detach()[:num_features]) | ||||
|     if module.running_mean is not None: | ||||
|         module.running_mean.copy_(init.running_mean.detach()[:num_features]) | ||||
|     if module.running_var is not None: | ||||
|         module.running_var.copy_(init.running_var.detach()[:num_features]) | ||||
|  | ||||
|  | ||||
| def copy_fc(module, init): | ||||
|     assert isinstance(module, nn.Linear), "invalid module : {:}".format(module) | ||||
|     assert isinstance(init, nn.Linear), "invalid module : {:}".format(init) | ||||
|     new_i, new_o = module.in_features, module.out_features | ||||
|     module.weight.copy_(init.weight.detach()[:new_o, :new_i]) | ||||
|     if module.bias is not None: | ||||
|         module.bias.copy_(init.bias.detach()[:new_o]) | ||||
|  | ||||
|  | ||||
| def copy_base(module, init): | ||||
|     assert type(module).__name__ in [ | ||||
|         "ConvBNReLU", | ||||
|         "Downsample", | ||||
|     ], "invalid module : {:}".format(module) | ||||
|     assert type(init).__name__ in [ | ||||
|         "ConvBNReLU", | ||||
|         "Downsample", | ||||
|     ], "invalid module : {:}".format(init) | ||||
|     if module.conv is not None: | ||||
|         copy_conv(module.conv, init.conv) | ||||
|     if module.bn is not None: | ||||
|         copy_bn(module.bn, init.bn) | ||||
|  | ||||
|  | ||||
| def copy_basic(module, init): | ||||
|     copy_base(module.conv_a, init.conv_a) | ||||
|     copy_base(module.conv_b, init.conv_b) | ||||
|     if module.downsample is not None: | ||||
|         if init.downsample is not None: | ||||
|             copy_base(module.downsample, init.downsample) | ||||
|         # else: | ||||
|         # import pdb; pdb.set_trace() | ||||
|  | ||||
|  | ||||
| def init_from_model(network, init_model): | ||||
|     with torch.no_grad(): | ||||
|         copy_fc(network.classifier, init_model.classifier) | ||||
|         for base, target in zip(init_model.layers, network.layers): | ||||
|             assert ( | ||||
|                 type(base).__name__ == type(target).__name__ | ||||
|             ), "invalid type : {:} vs {:}".format(base, target) | ||||
|             if type(base).__name__ == "ConvBNReLU": | ||||
|                 copy_base(target, base) | ||||
|             elif type(base).__name__ == "ResNetBasicblock": | ||||
|                 copy_basic(target, base) | ||||
|             else: | ||||
|                 raise ValueError("unknown type name : {:}".format(type(base).__name__)) | ||||
							
								
								
									
										16
									
								
								AutoDL-Projects/xautodl/models/initialization.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								AutoDL-Projects/xautodl/models/initialization.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,16 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def initialize_resnet(m): | ||||
|     if isinstance(m, nn.Conv2d): | ||||
|         nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | ||||
|         if m.bias is not None: | ||||
|             nn.init.constant_(m.bias, 0) | ||||
|     elif isinstance(m, nn.BatchNorm2d): | ||||
|         nn.init.constant_(m.weight, 1) | ||||
|         if m.bias is not None: | ||||
|             nn.init.constant_(m.bias, 0) | ||||
|     elif isinstance(m, nn.Linear): | ||||
|         nn.init.normal_(m.weight, 0, 0.01) | ||||
|         nn.init.constant_(m.bias, 0) | ||||
							
								
								
									
										287
									
								
								AutoDL-Projects/xautodl/models/shape_infers/InferCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										287
									
								
								AutoDL-Projects/xautodl/models/shape_infers/InferCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,287 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| from ..initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         if has_bn: | ||||
|             self.bn = nn.BatchNorm2d(nOut) | ||||
|         else: | ||||
|             self.bn = None | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.bn: | ||||
|             out = self.bn(conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|  | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     num_conv = 2 | ||||
|     expansion = 1 | ||||
|  | ||||
|     def __init__(self, iCs, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         assert isinstance(iCs, tuple) or isinstance( | ||||
|             iCs, list | ||||
|         ), "invalid type of iCs : {:}".format(iCs) | ||||
|         assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs) | ||||
|  | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             iCs[0], | ||||
|             iCs[1], | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         residual_in = iCs[0] | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[2], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[2] | ||||
|         elif iCs[0] != iCs[2]: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[2], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         # self.out_dim  = max(residual_in, iCs[2]) | ||||
|         self.out_dim = iCs[2] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + basicblock | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, iCs, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         assert isinstance(iCs, tuple) or isinstance( | ||||
|             iCs, list | ||||
|         ), "invalid type of iCs : {:}".format(iCs) | ||||
|         assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             iCs[1], | ||||
|             iCs[2], | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         residual_in = iCs[0] | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[3], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[3] | ||||
|         elif iCs[0] != iCs[3]: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[3], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[3] | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         # self.out_dim = max(residual_in, iCs[3]) | ||||
|         self.out_dim = iCs[3] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + bottleneck | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class InferCifarResNet(nn.Module): | ||||
|     def __init__( | ||||
|         self, block_name, depth, xblocks, xchannels, num_classes, zero_init_residual | ||||
|     ): | ||||
|         super(InferCifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|         assert len(xblocks) == 3, "invalid xblocks : {:}".format(xblocks) | ||||
|  | ||||
|         self.message = ( | ||||
|             "InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.xchannels = xchannels | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     xchannels[0], | ||||
|                     xchannels[1], | ||||
|                     3, | ||||
|                     1, | ||||
|                     1, | ||||
|                     False, | ||||
|                     has_avg=False, | ||||
|                     has_bn=True, | ||||
|                     has_relu=True, | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         last_channel_idx = 1 | ||||
|         for stage in range(3): | ||||
|             for iL in range(layer_blocks): | ||||
|                 num_conv = block.num_conv | ||||
|                 iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1] | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iCs, stride) | ||||
|                 last_channel_idx += num_conv | ||||
|                 self.xchannels[last_channel_idx] = module.out_dim | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iCs, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|                 if iL + 1 == xblocks[stage]:  # reach the maximum depth | ||||
|                     out_channel = module.out_dim | ||||
|                     for iiL in range(iL + 1, layer_blocks): | ||||
|                         last_channel_idx += num_conv | ||||
|                     self.xchannels[last_channel_idx] = module.out_dim | ||||
|                     break | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|         if zero_init_residual: | ||||
|             for m in self.modules(): | ||||
|                 if isinstance(m, ResNetBasicblock): | ||||
|                     nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|                 elif isinstance(m, ResNetBottleneck): | ||||
|                     nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
| @@ -0,0 +1,263 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         if has_bn: | ||||
|             self.bn = nn.BatchNorm2d(nOut) | ||||
|         else: | ||||
|             self.bn = None | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.bn: | ||||
|             out = self.bn(conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|  | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     num_conv = 2 | ||||
|     expansion = 1 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|  | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             inplanes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + basicblock | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes * self.expansion, | ||||
|             1, | ||||
|             1, | ||||
|             0, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=False, | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes * self.expansion: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes * self.expansion | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + bottleneck | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class InferDepthCifarResNet(nn.Module): | ||||
|     def __init__(self, block_name, depth, xblocks, num_classes, zero_init_residual): | ||||
|         super(InferDepthCifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|         assert len(xblocks) == 3, "invalid xblocks : {:}".format(xblocks) | ||||
|  | ||||
|         self.message = ( | ||||
|             "InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         self.channels = [16] | ||||
|         for stage in range(3): | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 16 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     planes, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|                 if iL + 1 == xblocks[stage]:  # reach the maximum depth | ||||
|                     break | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(self.channels[-1], num_classes) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|         if zero_init_residual: | ||||
|             for m in self.modules(): | ||||
|                 if isinstance(m, ResNetBasicblock): | ||||
|                     nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|                 elif isinstance(m, ResNetBottleneck): | ||||
|                     nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
| @@ -0,0 +1,277 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         if has_bn: | ||||
|             self.bn = nn.BatchNorm2d(nOut) | ||||
|         else: | ||||
|             self.bn = None | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.bn: | ||||
|             out = self.bn(conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|  | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     num_conv = 2 | ||||
|     expansion = 1 | ||||
|  | ||||
|     def __init__(self, iCs, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         assert isinstance(iCs, tuple) or isinstance( | ||||
|             iCs, list | ||||
|         ), "invalid type of iCs : {:}".format(iCs) | ||||
|         assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs) | ||||
|  | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             iCs[0], | ||||
|             iCs[1], | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         residual_in = iCs[0] | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[2], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[2] | ||||
|         elif iCs[0] != iCs[2]: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[2], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         # self.out_dim  = max(residual_in, iCs[2]) | ||||
|         self.out_dim = iCs[2] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + basicblock | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, iCs, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         assert isinstance(iCs, tuple) or isinstance( | ||||
|             iCs, list | ||||
|         ), "invalid type of iCs : {:}".format(iCs) | ||||
|         assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             iCs[1], | ||||
|             iCs[2], | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         residual_in = iCs[0] | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[3], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[3] | ||||
|         elif iCs[0] != iCs[3]: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[3], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[3] | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         # self.out_dim = max(residual_in, iCs[3]) | ||||
|         self.out_dim = iCs[3] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + bottleneck | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class InferWidthCifarResNet(nn.Module): | ||||
|     def __init__(self, block_name, depth, xchannels, num_classes, zero_init_residual): | ||||
|         super(InferWidthCifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|  | ||||
|         self.message = ( | ||||
|             "InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.xchannels = xchannels | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     xchannels[0], | ||||
|                     xchannels[1], | ||||
|                     3, | ||||
|                     1, | ||||
|                     1, | ||||
|                     False, | ||||
|                     has_avg=False, | ||||
|                     has_bn=True, | ||||
|                     has_relu=True, | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         last_channel_idx = 1 | ||||
|         for stage in range(3): | ||||
|             for iL in range(layer_blocks): | ||||
|                 num_conv = block.num_conv | ||||
|                 iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1] | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iCs, stride) | ||||
|                 last_channel_idx += num_conv | ||||
|                 self.xchannels[last_channel_idx] = module.out_dim | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iCs, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|         if zero_init_residual: | ||||
|             for m in self.modules(): | ||||
|                 if isinstance(m, ResNetBasicblock): | ||||
|                     nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|                 elif isinstance(m, ResNetBottleneck): | ||||
|                     nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
| @@ -0,0 +1,324 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|  | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         if has_bn: | ||||
|             self.bn = nn.BatchNorm2d(nOut) | ||||
|         else: | ||||
|             self.bn = None | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.bn: | ||||
|             out = self.bn(conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|  | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     num_conv = 2 | ||||
|     expansion = 1 | ||||
|  | ||||
|     def __init__(self, iCs, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         assert isinstance(iCs, tuple) or isinstance( | ||||
|             iCs, list | ||||
|         ), "invalid type of iCs : {:}".format(iCs) | ||||
|         assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs) | ||||
|  | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             iCs[0], | ||||
|             iCs[1], | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         residual_in = iCs[0] | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[2], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[2] | ||||
|         elif iCs[0] != iCs[2]: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[2], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         # self.out_dim  = max(residual_in, iCs[2]) | ||||
|         self.out_dim = iCs[2] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + basicblock | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, iCs, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         assert isinstance(iCs, tuple) or isinstance( | ||||
|             iCs, list | ||||
|         ), "invalid type of iCs : {:}".format(iCs) | ||||
|         assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             iCs[1], | ||||
|             iCs[2], | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         residual_in = iCs[0] | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[3], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[3] | ||||
|         elif iCs[0] != iCs[3]: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 iCs[0], | ||||
|                 iCs[3], | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|             residual_in = iCs[3] | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         # self.out_dim = max(residual_in, iCs[3]) | ||||
|         self.out_dim = iCs[3] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = residual + bottleneck | ||||
|         return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class InferImagenetResNet(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         block_name, | ||||
|         layers, | ||||
|         xblocks, | ||||
|         xchannels, | ||||
|         deep_stem, | ||||
|         num_classes, | ||||
|         zero_init_residual, | ||||
|     ): | ||||
|         super(InferImagenetResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "BasicBlock": | ||||
|             block = ResNetBasicblock | ||||
|         elif block_name == "Bottleneck": | ||||
|             block = ResNetBottleneck | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|         assert len(xblocks) == len( | ||||
|             layers | ||||
|         ), "invalid layers : {:} vs xblocks : {:}".format(layers, xblocks) | ||||
|  | ||||
|         self.message = "InferImagenetResNet : Depth : {:} -> {:}, Layers for each block : {:}".format( | ||||
|             sum(layers) * block.num_conv, sum(xblocks) * block.num_conv, xblocks | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.xchannels = xchannels | ||||
|         if not deep_stem: | ||||
|             self.layers = nn.ModuleList( | ||||
|                 [ | ||||
|                     ConvBNReLU( | ||||
|                         xchannels[0], | ||||
|                         xchannels[1], | ||||
|                         7, | ||||
|                         2, | ||||
|                         3, | ||||
|                         False, | ||||
|                         has_avg=False, | ||||
|                         has_bn=True, | ||||
|                         has_relu=True, | ||||
|                     ) | ||||
|                 ] | ||||
|             ) | ||||
|             last_channel_idx = 1 | ||||
|         else: | ||||
|             self.layers = nn.ModuleList( | ||||
|                 [ | ||||
|                     ConvBNReLU( | ||||
|                         xchannels[0], | ||||
|                         xchannels[1], | ||||
|                         3, | ||||
|                         2, | ||||
|                         1, | ||||
|                         False, | ||||
|                         has_avg=False, | ||||
|                         has_bn=True, | ||||
|                         has_relu=True, | ||||
|                     ), | ||||
|                     ConvBNReLU( | ||||
|                         xchannels[1], | ||||
|                         xchannels[2], | ||||
|                         3, | ||||
|                         1, | ||||
|                         1, | ||||
|                         False, | ||||
|                         has_avg=False, | ||||
|                         has_bn=True, | ||||
|                         has_relu=True, | ||||
|                     ), | ||||
|                 ] | ||||
|             ) | ||||
|             last_channel_idx = 2 | ||||
|         self.layers.append(nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) | ||||
|         for stage, layer_blocks in enumerate(layers): | ||||
|             for iL in range(layer_blocks): | ||||
|                 num_conv = block.num_conv | ||||
|                 iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1] | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iCs, stride) | ||||
|                 last_channel_idx += num_conv | ||||
|                 self.xchannels[last_channel_idx] = module.out_dim | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iCs, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|                 if iL + 1 == xblocks[stage]:  # reach the maximum depth | ||||
|                     out_channel = module.out_dim | ||||
|                     for iiL in range(iL + 1, layer_blocks): | ||||
|                         last_channel_idx += num_conv | ||||
|                     self.xchannels[last_channel_idx] = module.out_dim | ||||
|                     break | ||||
|         assert last_channel_idx + 1 == len(self.xchannels), "{:} vs {:}".format( | ||||
|             last_channel_idx, len(self.xchannels) | ||||
|         ) | ||||
|         self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | ||||
|         self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||||
|  | ||||
|         self.apply(initialize_resnet) | ||||
|         if zero_init_residual: | ||||
|             for m in self.modules(): | ||||
|                 if isinstance(m, ResNetBasicblock): | ||||
|                     nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|                 elif isinstance(m, ResNetBottleneck): | ||||
|                     nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										176
									
								
								AutoDL-Projects/xautodl/models/shape_infers/InferMobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										176
									
								
								AutoDL-Projects/xautodl/models/shape_infers/InferMobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,176 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| # MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018 | ||||
| ##################################################### | ||||
| from torch import nn | ||||
|  | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils import parse_channel_info | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         in_planes, | ||||
|         out_planes, | ||||
|         kernel_size, | ||||
|         stride, | ||||
|         groups, | ||||
|         has_bn=True, | ||||
|         has_relu=True, | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         padding = (kernel_size - 1) // 2 | ||||
|         self.conv = nn.Conv2d( | ||||
|             in_planes, | ||||
|             out_planes, | ||||
|             kernel_size, | ||||
|             stride, | ||||
|             padding, | ||||
|             groups=groups, | ||||
|             bias=False, | ||||
|         ) | ||||
|         if has_bn: | ||||
|             self.bn = nn.BatchNorm2d(out_planes) | ||||
|         else: | ||||
|             self.bn = None | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU6(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|  | ||||
|     def forward(self, x): | ||||
|         out = self.conv(x) | ||||
|         if self.bn: | ||||
|             out = self.bn(out) | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class InvertedResidual(nn.Module): | ||||
|     def __init__(self, channels, stride, expand_ratio, additive): | ||||
|         super(InvertedResidual, self).__init__() | ||||
|         self.stride = stride | ||||
|         assert stride in [1, 2], "invalid stride : {:}".format(stride) | ||||
|         assert len(channels) in [2, 3], "invalid channels : {:}".format(channels) | ||||
|  | ||||
|         if len(channels) == 2: | ||||
|             layers = [] | ||||
|         else: | ||||
|             layers = [ConvBNReLU(channels[0], channels[1], 1, 1, 1)] | ||||
|         layers.extend( | ||||
|             [ | ||||
|                 # dw | ||||
|                 ConvBNReLU(channels[-2], channels[-2], 3, stride, channels[-2]), | ||||
|                 # pw-linear | ||||
|                 ConvBNReLU(channels[-2], channels[-1], 1, 1, 1, True, False), | ||||
|             ] | ||||
|         ) | ||||
|         self.conv = nn.Sequential(*layers) | ||||
|         self.additive = additive | ||||
|         if self.additive and channels[0] != channels[-1]: | ||||
|             self.shortcut = ConvBNReLU(channels[0], channels[-1], 1, 1, 1, True, False) | ||||
|         else: | ||||
|             self.shortcut = None | ||||
|         self.out_dim = channels[-1] | ||||
|  | ||||
|     def forward(self, x): | ||||
|         out = self.conv(x) | ||||
|         # if self.additive: return additive_func(out, x) | ||||
|         if self.shortcut: | ||||
|             return out + self.shortcut(x) | ||||
|         else: | ||||
|             return out | ||||
|  | ||||
|  | ||||
| class InferMobileNetV2(nn.Module): | ||||
|     def __init__(self, num_classes, xchannels, xblocks, dropout): | ||||
|         super(InferMobileNetV2, self).__init__() | ||||
|         block = InvertedResidual | ||||
|         inverted_residual_setting = [ | ||||
|             # t, c,  n, s | ||||
|             [1, 16, 1, 1], | ||||
|             [6, 24, 2, 2], | ||||
|             [6, 32, 3, 2], | ||||
|             [6, 64, 4, 2], | ||||
|             [6, 96, 3, 1], | ||||
|             [6, 160, 3, 2], | ||||
|             [6, 320, 1, 1], | ||||
|         ] | ||||
|         assert len(inverted_residual_setting) == len( | ||||
|             xblocks | ||||
|         ), "invalid number of layers : {:} vs {:}".format( | ||||
|             len(inverted_residual_setting), len(xblocks) | ||||
|         ) | ||||
|         for block_num, ir_setting in zip(xblocks, inverted_residual_setting): | ||||
|             assert block_num <= ir_setting[2], "{:} vs {:}".format( | ||||
|                 block_num, ir_setting | ||||
|             ) | ||||
|         xchannels = parse_channel_info(xchannels) | ||||
|         # for i, chs in enumerate(xchannels): | ||||
|         #  if i > 0: assert chs[0] == xchannels[i-1][-1], 'Layer[{:}] is invalid {:} vs {:}'.format(i, xchannels[i-1], chs) | ||||
|         self.xchannels = xchannels | ||||
|         self.message = "InferMobileNetV2 : xblocks={:}".format(xblocks) | ||||
|         # building first layer | ||||
|         features = [ConvBNReLU(xchannels[0][0], xchannels[0][1], 3, 2, 1)] | ||||
|         last_channel_idx = 1 | ||||
|  | ||||
|         # building inverted residual blocks | ||||
|         for stage, (t, c, n, s) in enumerate(inverted_residual_setting): | ||||
|             for i in range(n): | ||||
|                 stride = s if i == 0 else 1 | ||||
|                 additv = True if i > 0 else False | ||||
|                 module = block(self.xchannels[last_channel_idx], stride, t, additv) | ||||
|                 features.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, Cs={:}, stride={:}, expand={:}, original-C={:}".format( | ||||
|                     stage, | ||||
|                     i, | ||||
|                     n, | ||||
|                     len(features), | ||||
|                     self.xchannels[last_channel_idx], | ||||
|                     stride, | ||||
|                     t, | ||||
|                     c, | ||||
|                 ) | ||||
|                 last_channel_idx += 1 | ||||
|                 if i + 1 == xblocks[stage]: | ||||
|                     out_channel = module.out_dim | ||||
|                     for iiL in range(i + 1, n): | ||||
|                         last_channel_idx += 1 | ||||
|                     self.xchannels[last_channel_idx][0] = module.out_dim | ||||
|                     break | ||||
|         # building last several layers | ||||
|         features.append( | ||||
|             ConvBNReLU( | ||||
|                 self.xchannels[last_channel_idx][0], | ||||
|                 self.xchannels[last_channel_idx][1], | ||||
|                 1, | ||||
|                 1, | ||||
|                 1, | ||||
|             ) | ||||
|         ) | ||||
|         assert last_channel_idx + 2 == len(self.xchannels), "{:} vs {:}".format( | ||||
|             last_channel_idx, len(self.xchannels) | ||||
|         ) | ||||
|         # make it nn.Sequential | ||||
|         self.features = nn.Sequential(*features) | ||||
|  | ||||
|         # building classifier | ||||
|         self.classifier = nn.Sequential( | ||||
|             nn.Dropout(dropout), | ||||
|             nn.Linear(self.xchannels[last_channel_idx][1], num_classes), | ||||
|         ) | ||||
|  | ||||
|         # weight initialization | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         features = self.features(inputs) | ||||
|         vectors = features.mean([2, 3]) | ||||
|         predicts = self.classifier(vectors) | ||||
|         return features, predicts | ||||
| @@ -0,0 +1,65 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| from typing import List, Text, Any | ||||
| import torch.nn as nn | ||||
|  | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from ..cell_infers.cells import InferCell | ||||
|  | ||||
|  | ||||
| class DynamicShapeTinyNet(nn.Module): | ||||
|     def __init__(self, channels: List[int], genotype: Any, num_classes: int): | ||||
|         super(DynamicShapeTinyNet, self).__init__() | ||||
|         self._channels = channels | ||||
|         if len(channels) % 3 != 2: | ||||
|             raise ValueError("invalid number of layers : {:}".format(len(channels))) | ||||
|         self._num_stage = N = len(channels) // 3 | ||||
|  | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(channels[0]), | ||||
|         ) | ||||
|  | ||||
|         # layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         c_prev = channels[0] | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(c_prev, c_curr, 2, True) | ||||
|             else: | ||||
|                 cell = InferCell(genotype, c_prev, c_curr, 1) | ||||
|             self.cells.append(cell) | ||||
|             c_prev = cell.out_dim | ||||
|         self._num_layer = len(self.cells) | ||||
|  | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(c_prev, num_classes) | ||||
|  | ||||
|     def get_message(self) -> Text: | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_channels}, N={_num_stage}, L={_num_layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
							
								
								
									
										9
									
								
								AutoDL-Projects/xautodl/models/shape_infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								AutoDL-Projects/xautodl/models/shape_infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,9 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| from .InferCifarResNet_width import InferWidthCifarResNet | ||||
| from .InferImagenetResNet import InferImagenetResNet | ||||
| from .InferCifarResNet_depth import InferDepthCifarResNet | ||||
| from .InferCifarResNet import InferCifarResNet | ||||
| from .InferMobileNetV2 import InferMobileNetV2 | ||||
| from .InferTinyCellNet import DynamicShapeTinyNet | ||||
| @@ -0,0 +1,5 @@ | ||||
| def parse_channel_info(xstring): | ||||
|     blocks = xstring.split(" ") | ||||
|     blocks = [x.split("-") for x in blocks] | ||||
|     blocks = [[int(_) for _ in x] for x in blocks] | ||||
|     return blocks | ||||
| @@ -0,0 +1,760 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils import additive_func | ||||
| from .SoftSelect import select2withP, ChannelWiseInter | ||||
| from .SoftSelect import linear_forward | ||||
| from .SoftSelect import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth, return_num): | ||||
|     if nDepth == 2: | ||||
|         choices = (1, 2) | ||||
|     elif nDepth == 3: | ||||
|         choices = (1, 2, 3) | ||||
|     elif nDepth > 3: | ||||
|         choices = list(range(1, nDepth + 1, 2)) | ||||
|         if choices[-1] < nDepth: | ||||
|             choices.append(nDepth) | ||||
|     else: | ||||
|         raise ValueError("invalid nDepth : {:}".format(nDepth)) | ||||
|     if return_num: | ||||
|         return len(choices) | ||||
|     else: | ||||
|         return choices | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|     iC = conv.in_channels | ||||
|     fill_size = list(inputs.size()) | ||||
|     fill_size[1] = iC - fill_size[1] | ||||
|     filled = torch.zeros(fill_size, device=inputs.device) | ||||
|     xinputs = torch.cat((inputs, filled), dim=1) | ||||
|     outputs = conv(xinputs) | ||||
|     selecteds = [outputs[:, :oC] for oC in choices] | ||||
|     return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         self.InShape = None | ||||
|         self.OutShape = None | ||||
|         self.choices = get_width_choices(nOut) | ||||
|         self.register_buffer("choices_tensor", torch.Tensor(self.choices)) | ||||
|  | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         # if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|         # else       : self.bn  = None | ||||
|         self.has_bn = has_bn | ||||
|         self.BNs = nn.ModuleList() | ||||
|         for i, _out in enumerate(self.choices): | ||||
|             self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|         self.in_dim = nIn | ||||
|         self.out_dim = nOut | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_flops(self, channels, check_range=True, divide=1): | ||||
|         iC, oC = channels | ||||
|         if check_range: | ||||
|             assert ( | ||||
|                 iC <= self.conv.in_channels and oC <= self.conv.out_channels | ||||
|             ), "{:} vs {:}  |  {:} vs {:}".format( | ||||
|                 iC, self.conv.in_channels, oC, self.conv.out_channels | ||||
|             ) | ||||
|         assert ( | ||||
|             isinstance(self.InShape, tuple) and len(self.InShape) == 2 | ||||
|         ), "invalid in-shape : {:}".format(self.InShape) | ||||
|         assert ( | ||||
|             isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 | ||||
|         ), "invalid out-shape : {:}".format(self.OutShape) | ||||
|         # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|         conv_per_position_flops = ( | ||||
|             self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups | ||||
|         ) | ||||
|         all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|         flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|         if self.conv.bias is not None: | ||||
|             flops += all_positions / divide | ||||
|         return flops | ||||
|  | ||||
|     def get_range(self): | ||||
|         return [self.choices] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|         index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|         probability = torch.squeeze(probability) | ||||
|         assert len(index) == 2, "invalid length : {:}".format(index) | ||||
|         # compute expected flop | ||||
|         # coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|         expected_outC = (self.choices_tensor * probability).sum() | ||||
|         expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         # convolutional layer | ||||
|         out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|         out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|         # merge | ||||
|         out_channel = max([x.size(1) for x in out_bns]) | ||||
|         outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|         outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|         out = outA * prob[0] + outB * prob[1] | ||||
|         # out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         return out, expected_outC, expected_flop | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.has_bn: | ||||
|             out = self.BNs[-1](conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|             self.OutShape = (out.size(-2), out.size(-1)) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     expansion = 1 | ||||
|     num_conv = 2 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             inplanes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 3, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|         flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_C = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_C = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv_b.OutShape[0] | ||||
|                 * self.conv_b.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_B + flop_C | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|         out_a, expected_inC_a, expected_flop_a = self.conv_a( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         out_b, expected_inC_b, expected_flop_b = self.conv_b( | ||||
|             (out_a, expected_inC_a, probability[1], indexes[1], probs[1]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[1], indexes[1], probs[1]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out_b) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_inC_b, | ||||
|             sum([expected_flop_a, expected_flop_b, expected_flop_c]), | ||||
|         ) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, basicblock) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes * self.expansion, | ||||
|             1, | ||||
|             1, | ||||
|             0, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=False, | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes * self.expansion: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes * self.expansion | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return ( | ||||
|             self.conv_1x1.get_range() | ||||
|             + self.conv_3x3.get_range() | ||||
|             + self.conv_1x4.get_range() | ||||
|         ) | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 4, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|         flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|         flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_D = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_D = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv_1x4.OutShape[0] | ||||
|                 * self.conv_1x4.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, bottleneck) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|         out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( | ||||
|             (out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1]) | ||||
|         ) | ||||
|         out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( | ||||
|             (out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[2], indexes[2], probs[2]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out_1x4) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_inC_1x4, | ||||
|             sum( | ||||
|                 [ | ||||
|                     expected_flop_1x1, | ||||
|                     expected_flop_3x3, | ||||
|                     expected_flop_1x4, | ||||
|                     expected_flop_c, | ||||
|                 ] | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class SearchShapeCifarResNet(nn.Module): | ||||
|     def __init__(self, block_name, depth, num_classes): | ||||
|         super(SearchShapeCifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|  | ||||
|         self.message = ( | ||||
|             "SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.channels = [16] | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         self.InShape = None | ||||
|         self.depth_info = OrderedDict() | ||||
|         self.depth_at_i = OrderedDict() | ||||
|         for stage in range(3): | ||||
|             cur_block_choices = get_depth_choices(layer_blocks, False) | ||||
|             assert ( | ||||
|                 cur_block_choices[-1] == layer_blocks | ||||
|             ), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks) | ||||
|             self.message += ( | ||||
|                 "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format( | ||||
|                     stage, cur_block_choices, layer_blocks | ||||
|                 ) | ||||
|             ) | ||||
|             block_choices, xstart = [], len(self.layers) | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 16 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iC, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|                 # added for depth | ||||
|                 layer_index = len(self.layers) - 1 | ||||
|                 if iL + 1 in cur_block_choices: | ||||
|                     block_choices.append(layer_index) | ||||
|                 if iL + 1 == layer_blocks: | ||||
|                     self.depth_info[layer_index] = { | ||||
|                         "choices": block_choices, | ||||
|                         "stage": stage, | ||||
|                         "xstart": xstart, | ||||
|                     } | ||||
|         self.depth_info_list = [] | ||||
|         for xend, info in self.depth_info.items(): | ||||
|             self.depth_info_list.append((xend, info)) | ||||
|             xstart, xstage = info["xstart"], info["stage"] | ||||
|             for ilayer in range(xstart, xend + 1): | ||||
|                 idx = bisect_right(info["choices"], ilayer - 1) | ||||
|                 self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|         self.InShape = None | ||||
|         self.tau = -1 | ||||
|         self.search_mode = "basic" | ||||
|         # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|  | ||||
|         # parameters for width | ||||
|         self.Ranges = [] | ||||
|         self.layer2indexRange = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             start_index = len(self.Ranges) | ||||
|             self.Ranges += layer.get_range() | ||||
|             self.layer2indexRange.append((start_index, len(self.Ranges))) | ||||
|         assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format( | ||||
|             len(self.Ranges) + 1, depth | ||||
|         ) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "width_attentions", | ||||
|             nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))), | ||||
|         ) | ||||
|         self.register_parameter( | ||||
|             "depth_attentions", | ||||
|             nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))), | ||||
|         ) | ||||
|         nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|         nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def arch_parameters(self, LR=None): | ||||
|         if LR is None: | ||||
|             return [self.width_attentions, self.depth_attentions] | ||||
|         else: | ||||
|             return [ | ||||
|                 {"params": self.width_attentions, "lr": LR}, | ||||
|                 {"params": self.depth_attentions, "lr": LR}, | ||||
|             ] | ||||
|  | ||||
|     def base_parameters(self): | ||||
|         return ( | ||||
|             list(self.layers.parameters()) | ||||
|             + list(self.avgpool.parameters()) | ||||
|             + list(self.classifier.parameters()) | ||||
|         ) | ||||
|  | ||||
|     def get_flop(self, mode, config_dict, extra_info): | ||||
|         if config_dict is not None: | ||||
|             config_dict = config_dict.copy() | ||||
|         # select channels | ||||
|         channels = [3] | ||||
|         for i, weight in enumerate(self.width_attentions): | ||||
|             if mode == "genotype": | ||||
|                 with torch.no_grad(): | ||||
|                     probe = nn.functional.softmax(weight, dim=0) | ||||
|                     C = self.Ranges[i][torch.argmax(probe).item()] | ||||
|             elif mode == "max": | ||||
|                 C = self.Ranges[i][-1] | ||||
|             elif mode == "fix": | ||||
|                 C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) | ||||
|             elif mode == "random": | ||||
|                 assert isinstance(extra_info, float), "invalid extra_info : {:}".format( | ||||
|                     extra_info | ||||
|                 ) | ||||
|                 with torch.no_grad(): | ||||
|                     prob = nn.functional.softmax(weight, dim=0) | ||||
|                     approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) | ||||
|                     for j in range(prob.size(0)): | ||||
|                         prob[j] = 1 / ( | ||||
|                             abs(j - (approximate_C - self.Ranges[i][j])) + 0.2 | ||||
|                         ) | ||||
|                     C = self.Ranges[i][torch.multinomial(prob, 1, False).item()] | ||||
|             else: | ||||
|                 raise ValueError("invalid mode : {:}".format(mode)) | ||||
|             channels.append(C) | ||||
|         # select depth | ||||
|         if mode == "genotype": | ||||
|             with torch.no_grad(): | ||||
|                 depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|                 choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|         elif mode == "max" or mode == "fix": | ||||
|             choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))] | ||||
|         elif mode == "random": | ||||
|             with torch.no_grad(): | ||||
|                 depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|                 choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() | ||||
|         else: | ||||
|             raise ValueError("invalid mode : {:}".format(mode)) | ||||
|         selected_layers = [] | ||||
|         for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|             xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1 | ||||
|             selected_layers.append(xtemp) | ||||
|         flop = 0 | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             s, e = self.layer2indexRange[i] | ||||
|             xchl = tuple(channels[s : e + 1]) | ||||
|             if i in self.depth_at_i: | ||||
|                 xstagei, xatti = self.depth_at_i[i] | ||||
|                 if xatti <= choices[xstagei]:  # leave this depth | ||||
|                     flop += layer.get_flops(xchl) | ||||
|                 else: | ||||
|                     flop += 0  # do not use this layer | ||||
|             else: | ||||
|                 flop += layer.get_flops(xchl) | ||||
|         # the last fc layer | ||||
|         flop += channels[-1] * self.classifier.out_features | ||||
|         if config_dict is None: | ||||
|             return flop / 1e6 | ||||
|         else: | ||||
|             config_dict["xchannels"] = channels | ||||
|             config_dict["xblocks"] = selected_layers | ||||
|             config_dict["super_type"] = "infer-shape" | ||||
|             config_dict["estimated_FLOP"] = flop / 1e6 | ||||
|             return flop / 1e6, config_dict | ||||
|  | ||||
|     def get_arch_info(self): | ||||
|         string = ( | ||||
|             "for depth and width, there are {:} + {:} attention probabilities.".format( | ||||
|                 len(self.depth_attentions), len(self.width_attentions) | ||||
|             ) | ||||
|         ) | ||||
|         string += "\n{:}".format(self.depth_info) | ||||
|         discrepancy = [] | ||||
|         with torch.no_grad(): | ||||
|             for i, att in enumerate(self.depth_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.depth_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.4f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:17s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || discrepancy={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|             string += "\n-----------------------------------------------" | ||||
|             for i, att in enumerate(self.width_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.width_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.3f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:52s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || dis={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|         return string, discrepancy | ||||
|  | ||||
|     def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|         assert ( | ||||
|             epoch_ratio >= 0 and epoch_ratio <= 1 | ||||
|         ), "invalid epoch-ratio : {:}".format(epoch_ratio) | ||||
|         tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, inputs): | ||||
|         flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|         flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         flop_depth_probs = torch.flip( | ||||
|             torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1] | ||||
|         ) | ||||
|         selected_widths, selected_width_probs = select2withP( | ||||
|             self.width_attentions, self.tau | ||||
|         ) | ||||
|         selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|         with torch.no_grad(): | ||||
|             selected_widths = selected_widths.cpu() | ||||
|  | ||||
|         x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|         feature_maps = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             selected_w_index = selected_widths[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             selected_w_probs = selected_width_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             layer_prob = flop_width_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             x, expected_inC, expected_flop = layer( | ||||
|                 (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) | ||||
|             ) | ||||
|             feature_maps.append(x) | ||||
|             last_channel_idx += layer.num_conv | ||||
|             if i in self.depth_info:  # aggregate the information | ||||
|                 choices = self.depth_info[i]["choices"] | ||||
|                 xstagei = self.depth_info[i]["stage"] | ||||
|                 # print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist())) | ||||
|                 # for A, W in zip(choices, selected_depth_probs[xstagei]): | ||||
|                 #  print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W)) | ||||
|                 possible_tensors = [] | ||||
|                 max_C = max(feature_maps[A].size(1) for A in choices) | ||||
|                 for tempi, A in enumerate(choices): | ||||
|                     xtensor = ChannelWiseInter(feature_maps[A], max_C) | ||||
|                     # drop_ratio = 1-(tempi+1.0)/len(choices) | ||||
|                     # xtensor = drop_path(xtensor, drop_ratio) | ||||
|                     possible_tensors.append(xtensor) | ||||
|                 weighted_sum = sum( | ||||
|                     xtensor * W | ||||
|                     for xtensor, W in zip( | ||||
|                         possible_tensors, selected_depth_probs[xstagei] | ||||
|                     ) | ||||
|                 ) | ||||
|                 x = weighted_sum | ||||
|  | ||||
|             if i in self.depth_at_i: | ||||
|                 xstagei, xatti = self.depth_at_i[i] | ||||
|                 x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop | ||||
|             else: | ||||
|                 x_expected_flop = expected_flop | ||||
|             flops.append(x_expected_flop) | ||||
|         flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6)) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = linear_forward(features, self.classifier) | ||||
|         return logits, torch.stack([sum(flops)]) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
| @@ -0,0 +1,515 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils import additive_func | ||||
| from .SoftSelect import select2withP, ChannelWiseInter | ||||
| from .SoftSelect import linear_forward | ||||
| from .SoftSelect import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth, return_num): | ||||
|     if nDepth == 2: | ||||
|         choices = (1, 2) | ||||
|     elif nDepth == 3: | ||||
|         choices = (1, 2, 3) | ||||
|     elif nDepth > 3: | ||||
|         choices = list(range(1, nDepth + 1, 2)) | ||||
|         if choices[-1] < nDepth: | ||||
|             choices.append(nDepth) | ||||
|     else: | ||||
|         raise ValueError("invalid nDepth : {:}".format(nDepth)) | ||||
|     if return_num: | ||||
|         return len(choices) | ||||
|     else: | ||||
|         return choices | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         self.InShape = None | ||||
|         self.OutShape = None | ||||
|         self.choices = get_width_choices(nOut) | ||||
|         self.register_buffer("choices_tensor", torch.Tensor(self.choices)) | ||||
|  | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         if has_bn: | ||||
|             self.bn = nn.BatchNorm2d(nOut) | ||||
|         else: | ||||
|             self.bn = None | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=False) | ||||
|         else: | ||||
|             self.relu = None | ||||
|         self.in_dim = nIn | ||||
|         self.out_dim = nOut | ||||
|  | ||||
|     def get_flops(self, divide=1): | ||||
|         iC, oC = self.in_dim, self.out_dim | ||||
|         assert ( | ||||
|             iC <= self.conv.in_channels and oC <= self.conv.out_channels | ||||
|         ), "{:} vs {:}  |  {:} vs {:}".format( | ||||
|             iC, self.conv.in_channels, oC, self.conv.out_channels | ||||
|         ) | ||||
|         assert ( | ||||
|             isinstance(self.InShape, tuple) and len(self.InShape) == 2 | ||||
|         ), "invalid in-shape : {:}".format(self.InShape) | ||||
|         assert ( | ||||
|             isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 | ||||
|         ), "invalid out-shape : {:}".format(self.OutShape) | ||||
|         # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|         conv_per_position_flops = ( | ||||
|             self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups | ||||
|         ) | ||||
|         all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|         flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|         if self.conv.bias is not None: | ||||
|             flops += all_positions / divide | ||||
|         return flops | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.bn: | ||||
|             out = self.bn(conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|             self.OutShape = (out.size(-2), out.size(-1)) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     expansion = 1 | ||||
|     num_conv = 2 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             inplanes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_flops(self, divide=1): | ||||
|         flop_A = self.conv_a.get_flops(divide) | ||||
|         flop_B = self.conv_b.get_flops(divide) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_C = self.downsample.get_flops(divide) | ||||
|         else: | ||||
|             flop_C = 0 | ||||
|         return flop_A + flop_B + flop_C | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, basicblock) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes * self.expansion, | ||||
|             1, | ||||
|             1, | ||||
|             0, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=False, | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes * self.expansion: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes * self.expansion | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return ( | ||||
|             self.conv_1x1.get_range() | ||||
|             + self.conv_3x3.get_range() | ||||
|             + self.conv_1x4.get_range() | ||||
|         ) | ||||
|  | ||||
|     def get_flops(self, divide): | ||||
|         flop_A = self.conv_1x1.get_flops(divide) | ||||
|         flop_B = self.conv_3x3.get_flops(divide) | ||||
|         flop_C = self.conv_1x4.get_flops(divide) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_D = self.downsample.get_flops(divide) | ||||
|         else: | ||||
|             flop_D = 0 | ||||
|         return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, bottleneck) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class SearchDepthCifarResNet(nn.Module): | ||||
|     def __init__(self, block_name, depth, num_classes): | ||||
|         super(SearchDepthCifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|  | ||||
|         self.message = ( | ||||
|             "SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.channels = [16] | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         self.InShape = None | ||||
|         self.depth_info = OrderedDict() | ||||
|         self.depth_at_i = OrderedDict() | ||||
|         for stage in range(3): | ||||
|             cur_block_choices = get_depth_choices(layer_blocks, False) | ||||
|             assert ( | ||||
|                 cur_block_choices[-1] == layer_blocks | ||||
|             ), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks) | ||||
|             self.message += ( | ||||
|                 "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format( | ||||
|                     stage, cur_block_choices, layer_blocks | ||||
|                 ) | ||||
|             ) | ||||
|             block_choices, xstart = [], len(self.layers) | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 16 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iC, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|                 # added for depth | ||||
|                 layer_index = len(self.layers) - 1 | ||||
|                 if iL + 1 in cur_block_choices: | ||||
|                     block_choices.append(layer_index) | ||||
|                 if iL + 1 == layer_blocks: | ||||
|                     self.depth_info[layer_index] = { | ||||
|                         "choices": block_choices, | ||||
|                         "stage": stage, | ||||
|                         "xstart": xstart, | ||||
|                     } | ||||
|         self.depth_info_list = [] | ||||
|         for xend, info in self.depth_info.items(): | ||||
|             self.depth_info_list.append((xend, info)) | ||||
|             xstart, xstage = info["xstart"], info["stage"] | ||||
|             for ilayer in range(xstart, xend + 1): | ||||
|                 idx = bisect_right(info["choices"], ilayer - 1) | ||||
|                 self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|         self.InShape = None | ||||
|         self.tau = -1 | ||||
|         self.search_mode = "basic" | ||||
|         # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "depth_attentions", | ||||
|             nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))), | ||||
|         ) | ||||
|         nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def arch_parameters(self): | ||||
|         return [self.depth_attentions] | ||||
|  | ||||
|     def base_parameters(self): | ||||
|         return ( | ||||
|             list(self.layers.parameters()) | ||||
|             + list(self.avgpool.parameters()) | ||||
|             + list(self.classifier.parameters()) | ||||
|         ) | ||||
|  | ||||
|     def get_flop(self, mode, config_dict, extra_info): | ||||
|         if config_dict is not None: | ||||
|             config_dict = config_dict.copy() | ||||
|         # select depth | ||||
|         if mode == "genotype": | ||||
|             with torch.no_grad(): | ||||
|                 depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|                 choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|         elif mode == "max": | ||||
|             choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))] | ||||
|         elif mode == "random": | ||||
|             with torch.no_grad(): | ||||
|                 depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|                 choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() | ||||
|         else: | ||||
|             raise ValueError("invalid mode : {:}".format(mode)) | ||||
|         selected_layers = [] | ||||
|         for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|             xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1 | ||||
|             selected_layers.append(xtemp) | ||||
|         flop = 0 | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             if i in self.depth_at_i: | ||||
|                 xstagei, xatti = self.depth_at_i[i] | ||||
|                 if xatti <= choices[xstagei]:  # leave this depth | ||||
|                     flop += layer.get_flops() | ||||
|                 else: | ||||
|                     flop += 0  # do not use this layer | ||||
|             else: | ||||
|                 flop += layer.get_flops() | ||||
|         # the last fc layer | ||||
|         flop += self.classifier.in_features * self.classifier.out_features | ||||
|         if config_dict is None: | ||||
|             return flop / 1e6 | ||||
|         else: | ||||
|             config_dict["xblocks"] = selected_layers | ||||
|             config_dict["super_type"] = "infer-depth" | ||||
|             config_dict["estimated_FLOP"] = flop / 1e6 | ||||
|             return flop / 1e6, config_dict | ||||
|  | ||||
|     def get_arch_info(self): | ||||
|         string = "for depth, there are {:} attention probabilities.".format( | ||||
|             len(self.depth_attentions) | ||||
|         ) | ||||
|         string += "\n{:}".format(self.depth_info) | ||||
|         discrepancy = [] | ||||
|         with torch.no_grad(): | ||||
|             for i, att in enumerate(self.depth_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.depth_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.4f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:17s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || discrepancy={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|         return string, discrepancy | ||||
|  | ||||
|     def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|         assert ( | ||||
|             epoch_ratio >= 0 and epoch_ratio <= 1 | ||||
|         ), "invalid epoch-ratio : {:}".format(epoch_ratio) | ||||
|         tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, inputs): | ||||
|         flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         flop_depth_probs = torch.flip( | ||||
|             torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1] | ||||
|         ) | ||||
|         selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|  | ||||
|         x, flops = inputs, [] | ||||
|         feature_maps = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             layer_i = layer(x) | ||||
|             feature_maps.append(layer_i) | ||||
|             if i in self.depth_info:  # aggregate the information | ||||
|                 choices = self.depth_info[i]["choices"] | ||||
|                 xstagei = self.depth_info[i]["stage"] | ||||
|                 possible_tensors = [] | ||||
|                 for tempi, A in enumerate(choices): | ||||
|                     xtensor = feature_maps[A] | ||||
|                     possible_tensors.append(xtensor) | ||||
|                 weighted_sum = sum( | ||||
|                     xtensor * W | ||||
|                     for xtensor, W in zip( | ||||
|                         possible_tensors, selected_depth_probs[xstagei] | ||||
|                     ) | ||||
|                 ) | ||||
|                 x = weighted_sum | ||||
|             else: | ||||
|                 x = layer_i | ||||
|  | ||||
|             if i in self.depth_at_i: | ||||
|                 xstagei, xatti = self.depth_at_i[i] | ||||
|                 # print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6))) | ||||
|                 x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops( | ||||
|                     1e6 | ||||
|                 ) | ||||
|             else: | ||||
|                 x_expected_flop = layer.get_flops(1e6) | ||||
|             flops.append(x_expected_flop) | ||||
|         flops.append( | ||||
|             (self.classifier.in_features * self.classifier.out_features * 1.0 / 1e6) | ||||
|         ) | ||||
|  | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = linear_forward(features, self.classifier) | ||||
|         return logits, torch.stack([sum(flops)]) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
| @@ -0,0 +1,619 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils import additive_func | ||||
| from .SoftSelect import select2withP, ChannelWiseInter | ||||
| from .SoftSelect import linear_forward | ||||
| from .SoftSelect import get_width_choices as get_choices | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|     iC = conv.in_channels | ||||
|     fill_size = list(inputs.size()) | ||||
|     fill_size[1] = iC - fill_size[1] | ||||
|     filled = torch.zeros(fill_size, device=inputs.device) | ||||
|     xinputs = torch.cat((inputs, filled), dim=1) | ||||
|     outputs = conv(xinputs) | ||||
|     selecteds = [outputs[:, :oC] for oC in choices] | ||||
|     return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         self.InShape = None | ||||
|         self.OutShape = None | ||||
|         self.choices = get_choices(nOut) | ||||
|         self.register_buffer("choices_tensor", torch.Tensor(self.choices)) | ||||
|  | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         # if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|         # else       : self.bn  = None | ||||
|         self.has_bn = has_bn | ||||
|         self.BNs = nn.ModuleList() | ||||
|         for i, _out in enumerate(self.choices): | ||||
|             self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|         self.in_dim = nIn | ||||
|         self.out_dim = nOut | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_flops(self, channels, check_range=True, divide=1): | ||||
|         iC, oC = channels | ||||
|         if check_range: | ||||
|             assert ( | ||||
|                 iC <= self.conv.in_channels and oC <= self.conv.out_channels | ||||
|             ), "{:} vs {:}  |  {:} vs {:}".format( | ||||
|                 iC, self.conv.in_channels, oC, self.conv.out_channels | ||||
|             ) | ||||
|         assert ( | ||||
|             isinstance(self.InShape, tuple) and len(self.InShape) == 2 | ||||
|         ), "invalid in-shape : {:}".format(self.InShape) | ||||
|         assert ( | ||||
|             isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 | ||||
|         ), "invalid out-shape : {:}".format(self.OutShape) | ||||
|         # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|         conv_per_position_flops = ( | ||||
|             self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups | ||||
|         ) | ||||
|         all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|         flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|         if self.conv.bias is not None: | ||||
|             flops += all_positions / divide | ||||
|         return flops | ||||
|  | ||||
|     def get_range(self): | ||||
|         return [self.choices] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|         index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|         probability = torch.squeeze(probability) | ||||
|         assert len(index) == 2, "invalid length : {:}".format(index) | ||||
|         # compute expected flop | ||||
|         # coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|         expected_outC = (self.choices_tensor * probability).sum() | ||||
|         expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         # convolutional layer | ||||
|         out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|         out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|         # merge | ||||
|         out_channel = max([x.size(1) for x in out_bns]) | ||||
|         outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|         outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|         out = outA * prob[0] + outB * prob[1] | ||||
|         # out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         return out, expected_outC, expected_flop | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.has_bn: | ||||
|             out = self.BNs[-1](conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|             self.OutShape = (out.size(-2), out.size(-1)) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     expansion = 1 | ||||
|     num_conv = 2 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             inplanes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 3, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|         flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_C = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_C = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv_b.OutShape[0] | ||||
|                 * self.conv_b.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_B + flop_C | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|         out_a, expected_inC_a, expected_flop_a = self.conv_a( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         out_b, expected_inC_b, expected_flop_b = self.conv_b( | ||||
|             (out_a, expected_inC_a, probability[1], indexes[1], probs[1]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[1], indexes[1], probs[1]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out_b) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_inC_b, | ||||
|             sum([expected_flop_a, expected_flop_b, expected_flop_c]), | ||||
|         ) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, basicblock) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes * self.expansion, | ||||
|             1, | ||||
|             1, | ||||
|             0, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=False, | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes * self.expansion: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes * self.expansion | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return ( | ||||
|             self.conv_1x1.get_range() | ||||
|             + self.conv_3x3.get_range() | ||||
|             + self.conv_1x4.get_range() | ||||
|         ) | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 4, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|         flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|         flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_D = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_D = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv_1x4.OutShape[0] | ||||
|                 * self.conv_1x4.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, bottleneck) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|         out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( | ||||
|             (out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1]) | ||||
|         ) | ||||
|         out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( | ||||
|             (out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[2], indexes[2], probs[2]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out_1x4) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_inC_1x4, | ||||
|             sum( | ||||
|                 [ | ||||
|                     expected_flop_1x1, | ||||
|                     expected_flop_3x3, | ||||
|                     expected_flop_1x4, | ||||
|                     expected_flop_c, | ||||
|                 ] | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class SearchWidthCifarResNet(nn.Module): | ||||
|     def __init__(self, block_name, depth, num_classes): | ||||
|         super(SearchWidthCifarResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "ResNetBasicblock": | ||||
|             block = ResNetBasicblock | ||||
|             assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" | ||||
|             layer_blocks = (depth - 2) // 6 | ||||
|         elif block_name == "ResNetBottleneck": | ||||
|             block = ResNetBottleneck | ||||
|             assert (depth - 2) % 9 == 0, "depth should be one of 164" | ||||
|             layer_blocks = (depth - 2) // 9 | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|  | ||||
|         self.message = ( | ||||
|             "SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.channels = [16] | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         self.InShape = None | ||||
|         for stage in range(3): | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 16 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iC, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|         self.InShape = None | ||||
|         self.tau = -1 | ||||
|         self.search_mode = "basic" | ||||
|         # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|  | ||||
|         # parameters for width | ||||
|         self.Ranges = [] | ||||
|         self.layer2indexRange = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             start_index = len(self.Ranges) | ||||
|             self.Ranges += layer.get_range() | ||||
|             self.layer2indexRange.append((start_index, len(self.Ranges))) | ||||
|         assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format( | ||||
|             len(self.Ranges) + 1, depth | ||||
|         ) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "width_attentions", | ||||
|             nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))), | ||||
|         ) | ||||
|         nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def arch_parameters(self): | ||||
|         return [self.width_attentions] | ||||
|  | ||||
|     def base_parameters(self): | ||||
|         return ( | ||||
|             list(self.layers.parameters()) | ||||
|             + list(self.avgpool.parameters()) | ||||
|             + list(self.classifier.parameters()) | ||||
|         ) | ||||
|  | ||||
|     def get_flop(self, mode, config_dict, extra_info): | ||||
|         if config_dict is not None: | ||||
|             config_dict = config_dict.copy() | ||||
|         # weights = [F.softmax(x, dim=0) for x in self.width_attentions] | ||||
|         channels = [3] | ||||
|         for i, weight in enumerate(self.width_attentions): | ||||
|             if mode == "genotype": | ||||
|                 with torch.no_grad(): | ||||
|                     probe = nn.functional.softmax(weight, dim=0) | ||||
|                     C = self.Ranges[i][torch.argmax(probe).item()] | ||||
|             elif mode == "max": | ||||
|                 C = self.Ranges[i][-1] | ||||
|             elif mode == "fix": | ||||
|                 C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) | ||||
|             elif mode == "random": | ||||
|                 assert isinstance(extra_info, float), "invalid extra_info : {:}".format( | ||||
|                     extra_info | ||||
|                 ) | ||||
|                 with torch.no_grad(): | ||||
|                     prob = nn.functional.softmax(weight, dim=0) | ||||
|                     approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) | ||||
|                     for j in range(prob.size(0)): | ||||
|                         prob[j] = 1 / ( | ||||
|                             abs(j - (approximate_C - self.Ranges[i][j])) + 0.2 | ||||
|                         ) | ||||
|                     C = self.Ranges[i][torch.multinomial(prob, 1, False).item()] | ||||
|             else: | ||||
|                 raise ValueError("invalid mode : {:}".format(mode)) | ||||
|             channels.append(C) | ||||
|         flop = 0 | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             s, e = self.layer2indexRange[i] | ||||
|             xchl = tuple(channels[s : e + 1]) | ||||
|             flop += layer.get_flops(xchl) | ||||
|         # the last fc layer | ||||
|         flop += channels[-1] * self.classifier.out_features | ||||
|         if config_dict is None: | ||||
|             return flop / 1e6 | ||||
|         else: | ||||
|             config_dict["xchannels"] = channels | ||||
|             config_dict["super_type"] = "infer-width" | ||||
|             config_dict["estimated_FLOP"] = flop / 1e6 | ||||
|             return flop / 1e6, config_dict | ||||
|  | ||||
|     def get_arch_info(self): | ||||
|         string = "for width, there are {:} attention probabilities.".format( | ||||
|             len(self.width_attentions) | ||||
|         ) | ||||
|         discrepancy = [] | ||||
|         with torch.no_grad(): | ||||
|             for i, att in enumerate(self.width_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.width_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.3f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:52s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || dis={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|         return string, discrepancy | ||||
|  | ||||
|     def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|         assert ( | ||||
|             epoch_ratio >= 0 and epoch_ratio <= 1 | ||||
|         ), "invalid epoch-ratio : {:}".format(epoch_ratio) | ||||
|         tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, inputs): | ||||
|         flop_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|         selected_widths, selected_probs = select2withP(self.width_attentions, self.tau) | ||||
|         with torch.no_grad(): | ||||
|             selected_widths = selected_widths.cpu() | ||||
|  | ||||
|         x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             selected_w_index = selected_widths[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             selected_w_probs = selected_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             layer_prob = flop_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             x, expected_inC, expected_flop = layer( | ||||
|                 (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) | ||||
|             ) | ||||
|             last_channel_idx += layer.num_conv | ||||
|             flops.append(expected_flop) | ||||
|         flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6)) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = linear_forward(features, self.classifier) | ||||
|         return logits, torch.stack([sum(flops)]) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
| @@ -0,0 +1,766 @@ | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils import additive_func | ||||
| from .SoftSelect import select2withP, ChannelWiseInter | ||||
| from .SoftSelect import linear_forward | ||||
| from .SoftSelect import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(layers): | ||||
|     min_depth = min(layers) | ||||
|     info = {"num": min_depth} | ||||
|     for i, depth in enumerate(layers): | ||||
|         choices = [] | ||||
|         for j in range(1, min_depth + 1): | ||||
|             choices.append(int(float(depth) * j / min_depth)) | ||||
|         info[i] = choices | ||||
|     return info | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|     iC = conv.in_channels | ||||
|     fill_size = list(inputs.size()) | ||||
|     fill_size[1] = iC - fill_size[1] | ||||
|     filled = torch.zeros(fill_size, device=inputs.device) | ||||
|     xinputs = torch.cat((inputs, filled), dim=1) | ||||
|     outputs = conv(xinputs) | ||||
|     selecteds = [outputs[:, :oC] for oC in choices] | ||||
|     return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         nIn, | ||||
|         nOut, | ||||
|         kernel, | ||||
|         stride, | ||||
|         padding, | ||||
|         bias, | ||||
|         has_avg, | ||||
|         has_bn, | ||||
|         has_relu, | ||||
|         last_max_pool=False, | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         self.InShape = None | ||||
|         self.OutShape = None | ||||
|         self.choices = get_width_choices(nOut) | ||||
|         self.register_buffer("choices_tensor", torch.Tensor(self.choices)) | ||||
|  | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         # if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|         # else       : self.bn  = None | ||||
|         self.has_bn = has_bn | ||||
|         self.BNs = nn.ModuleList() | ||||
|         for i, _out in enumerate(self.choices): | ||||
|             self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|  | ||||
|         if last_max_pool: | ||||
|             self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||||
|         else: | ||||
|             self.maxpool = None | ||||
|         self.in_dim = nIn | ||||
|         self.out_dim = nOut | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_flops(self, channels, check_range=True, divide=1): | ||||
|         iC, oC = channels | ||||
|         if check_range: | ||||
|             assert ( | ||||
|                 iC <= self.conv.in_channels and oC <= self.conv.out_channels | ||||
|             ), "{:} vs {:}  |  {:} vs {:}".format( | ||||
|                 iC, self.conv.in_channels, oC, self.conv.out_channels | ||||
|             ) | ||||
|         assert ( | ||||
|             isinstance(self.InShape, tuple) and len(self.InShape) == 2 | ||||
|         ), "invalid in-shape : {:}".format(self.InShape) | ||||
|         assert ( | ||||
|             isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 | ||||
|         ), "invalid out-shape : {:}".format(self.OutShape) | ||||
|         # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|         conv_per_position_flops = ( | ||||
|             self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups | ||||
|         ) | ||||
|         all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|         flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|         if self.conv.bias is not None: | ||||
|             flops += all_positions / divide | ||||
|         return flops | ||||
|  | ||||
|     def get_range(self): | ||||
|         return [self.choices] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|         index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|         probability = torch.squeeze(probability) | ||||
|         assert len(index) == 2, "invalid length : {:}".format(index) | ||||
|         # compute expected flop | ||||
|         # coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|         expected_outC = (self.choices_tensor * probability).sum() | ||||
|         expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         # convolutional layer | ||||
|         out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|         out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|         # merge | ||||
|         out_channel = max([x.size(1) for x in out_bns]) | ||||
|         outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|         outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|         out = outA * prob[0] + outB * prob[1] | ||||
|         # out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         if self.maxpool: | ||||
|             out = self.maxpool(out) | ||||
|         return out, expected_outC, expected_flop | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.has_bn: | ||||
|             out = self.BNs[-1](conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|             self.OutShape = (out.size(-2), out.size(-1)) | ||||
|         if self.maxpool: | ||||
|             out = self.maxpool(out) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|     expansion = 1 | ||||
|     num_conv = 2 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBasicblock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_a = ConvBNReLU( | ||||
|             inplanes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_b = ConvBNReLU( | ||||
|             planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 3, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|         flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_C = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_C = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv_b.OutShape[0] | ||||
|                 * self.conv_b.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_B + flop_C | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|         # import pdb; pdb.set_trace() | ||||
|         out_a, expected_inC_a, expected_flop_a = self.conv_a( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         out_b, expected_inC_b, expected_flop_b = self.conv_b( | ||||
|             (out_a, expected_inC_a, probability[1], indexes[1], probs[1]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[1], indexes[1], probs[1]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out_b) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_inC_b, | ||||
|             sum([expected_flop_a, expected_flop_b, expected_flop_c]), | ||||
|         ) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         basicblock = self.conv_a(inputs) | ||||
|         basicblock = self.conv_b(basicblock) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, basicblock) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|     expansion = 4 | ||||
|     num_conv = 3 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(ResNetBottleneck, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv_1x1 = ConvBNReLU( | ||||
|             inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True | ||||
|         ) | ||||
|         self.conv_3x3 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         self.conv_1x4 = ConvBNReLU( | ||||
|             planes, | ||||
|             planes * self.expansion, | ||||
|             1, | ||||
|             1, | ||||
|             0, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=False, | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes * self.expansion: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes * self.expansion, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes * self.expansion | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return ( | ||||
|             self.conv_1x1.get_range() | ||||
|             + self.conv_3x3.get_range() | ||||
|             + self.conv_1x4.get_range() | ||||
|         ) | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 4, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|         flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|         flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_D = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_D = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv_1x4.OutShape[0] | ||||
|                 * self.conv_1x4.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         bottleneck = self.conv_1x1(inputs) | ||||
|         bottleneck = self.conv_3x3(bottleneck) | ||||
|         bottleneck = self.conv_1x4(bottleneck) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, bottleneck) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|         out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( | ||||
|             (out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1]) | ||||
|         ) | ||||
|         out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( | ||||
|             (out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[2], indexes[2], probs[2]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out_1x4) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_inC_1x4, | ||||
|             sum( | ||||
|                 [ | ||||
|                     expected_flop_1x1, | ||||
|                     expected_flop_3x3, | ||||
|                     expected_flop_1x4, | ||||
|                     expected_flop_c, | ||||
|                 ] | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class SearchShapeImagenetResNet(nn.Module): | ||||
|     def __init__(self, block_name, layers, deep_stem, num_classes): | ||||
|         super(SearchShapeImagenetResNet, self).__init__() | ||||
|  | ||||
|         # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|         if block_name == "BasicBlock": | ||||
|             block = ResNetBasicblock | ||||
|         elif block_name == "Bottleneck": | ||||
|             block = ResNetBottleneck | ||||
|         else: | ||||
|             raise ValueError("invalid block : {:}".format(block_name)) | ||||
|  | ||||
|         self.message = ( | ||||
|             "SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 sum(layers) * block.num_conv, layers | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         if not deep_stem: | ||||
|             self.layers = nn.ModuleList( | ||||
|                 [ | ||||
|                     ConvBNReLU( | ||||
|                         3, | ||||
|                         64, | ||||
|                         7, | ||||
|                         2, | ||||
|                         3, | ||||
|                         False, | ||||
|                         has_avg=False, | ||||
|                         has_bn=True, | ||||
|                         has_relu=True, | ||||
|                         last_max_pool=True, | ||||
|                     ) | ||||
|                 ] | ||||
|             ) | ||||
|             self.channels = [64] | ||||
|         else: | ||||
|             self.layers = nn.ModuleList( | ||||
|                 [ | ||||
|                     ConvBNReLU( | ||||
|                         3, 32, 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True | ||||
|                     ), | ||||
|                     ConvBNReLU( | ||||
|                         32, | ||||
|                         64, | ||||
|                         3, | ||||
|                         1, | ||||
|                         1, | ||||
|                         False, | ||||
|                         has_avg=False, | ||||
|                         has_bn=True, | ||||
|                         has_relu=True, | ||||
|                         last_max_pool=True, | ||||
|                     ), | ||||
|                 ] | ||||
|             ) | ||||
|             self.channels = [32, 64] | ||||
|  | ||||
|         meta_depth_info = get_depth_choices(layers) | ||||
|         self.InShape = None | ||||
|         self.depth_info = OrderedDict() | ||||
|         self.depth_at_i = OrderedDict() | ||||
|         for stage, layer_blocks in enumerate(layers): | ||||
|             cur_block_choices = meta_depth_info[stage] | ||||
|             assert ( | ||||
|                 cur_block_choices[-1] == layer_blocks | ||||
|             ), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks) | ||||
|             block_choices, xstart = [], len(self.layers) | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 64 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = block(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iC, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|                 # added for depth | ||||
|                 layer_index = len(self.layers) - 1 | ||||
|                 if iL + 1 in cur_block_choices: | ||||
|                     block_choices.append(layer_index) | ||||
|                 if iL + 1 == layer_blocks: | ||||
|                     self.depth_info[layer_index] = { | ||||
|                         "choices": block_choices, | ||||
|                         "stage": stage, | ||||
|                         "xstart": xstart, | ||||
|                     } | ||||
|         self.depth_info_list = [] | ||||
|         for xend, info in self.depth_info.items(): | ||||
|             self.depth_info_list.append((xend, info)) | ||||
|             xstart, xstage = info["xstart"], info["stage"] | ||||
|             for ilayer in range(xstart, xend + 1): | ||||
|                 idx = bisect_right(info["choices"], ilayer - 1) | ||||
|                 self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|         self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | ||||
|         self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|         self.InShape = None | ||||
|         self.tau = -1 | ||||
|         self.search_mode = "basic" | ||||
|         # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|  | ||||
|         # parameters for width | ||||
|         self.Ranges = [] | ||||
|         self.layer2indexRange = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             start_index = len(self.Ranges) | ||||
|             self.Ranges += layer.get_range() | ||||
|             self.layer2indexRange.append((start_index, len(self.Ranges))) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "width_attentions", | ||||
|             nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))), | ||||
|         ) | ||||
|         self.register_parameter( | ||||
|             "depth_attentions", | ||||
|             nn.Parameter(torch.Tensor(len(layers), meta_depth_info["num"])), | ||||
|         ) | ||||
|         nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|         nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def arch_parameters(self, LR=None): | ||||
|         if LR is None: | ||||
|             return [self.width_attentions, self.depth_attentions] | ||||
|         else: | ||||
|             return [ | ||||
|                 {"params": self.width_attentions, "lr": LR}, | ||||
|                 {"params": self.depth_attentions, "lr": LR}, | ||||
|             ] | ||||
|  | ||||
|     def base_parameters(self): | ||||
|         return ( | ||||
|             list(self.layers.parameters()) | ||||
|             + list(self.avgpool.parameters()) | ||||
|             + list(self.classifier.parameters()) | ||||
|         ) | ||||
|  | ||||
|     def get_flop(self, mode, config_dict, extra_info): | ||||
|         if config_dict is not None: | ||||
|             config_dict = config_dict.copy() | ||||
|         # select channels | ||||
|         channels = [3] | ||||
|         for i, weight in enumerate(self.width_attentions): | ||||
|             if mode == "genotype": | ||||
|                 with torch.no_grad(): | ||||
|                     probe = nn.functional.softmax(weight, dim=0) | ||||
|                     C = self.Ranges[i][torch.argmax(probe).item()] | ||||
|             else: | ||||
|                 raise ValueError("invalid mode : {:}".format(mode)) | ||||
|             channels.append(C) | ||||
|         # select depth | ||||
|         if mode == "genotype": | ||||
|             with torch.no_grad(): | ||||
|                 depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|                 choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|         else: | ||||
|             raise ValueError("invalid mode : {:}".format(mode)) | ||||
|         selected_layers = [] | ||||
|         for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|             xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1 | ||||
|             selected_layers.append(xtemp) | ||||
|         flop = 0 | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             s, e = self.layer2indexRange[i] | ||||
|             xchl = tuple(channels[s : e + 1]) | ||||
|             if i in self.depth_at_i: | ||||
|                 xstagei, xatti = self.depth_at_i[i] | ||||
|                 if xatti <= choices[xstagei]:  # leave this depth | ||||
|                     flop += layer.get_flops(xchl) | ||||
|                 else: | ||||
|                     flop += 0  # do not use this layer | ||||
|             else: | ||||
|                 flop += layer.get_flops(xchl) | ||||
|         # the last fc layer | ||||
|         flop += channels[-1] * self.classifier.out_features | ||||
|         if config_dict is None: | ||||
|             return flop / 1e6 | ||||
|         else: | ||||
|             config_dict["xchannels"] = channels | ||||
|             config_dict["xblocks"] = selected_layers | ||||
|             config_dict["super_type"] = "infer-shape" | ||||
|             config_dict["estimated_FLOP"] = flop / 1e6 | ||||
|             return flop / 1e6, config_dict | ||||
|  | ||||
|     def get_arch_info(self): | ||||
|         string = ( | ||||
|             "for depth and width, there are {:} + {:} attention probabilities.".format( | ||||
|                 len(self.depth_attentions), len(self.width_attentions) | ||||
|             ) | ||||
|         ) | ||||
|         string += "\n{:}".format(self.depth_info) | ||||
|         discrepancy = [] | ||||
|         with torch.no_grad(): | ||||
|             for i, att in enumerate(self.depth_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.depth_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.4f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:17s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || discrepancy={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|             string += "\n-----------------------------------------------" | ||||
|             for i, att in enumerate(self.width_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.width_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.3f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:52s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || dis={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|         return string, discrepancy | ||||
|  | ||||
|     def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|         assert ( | ||||
|             epoch_ratio >= 0 and epoch_ratio <= 1 | ||||
|         ), "invalid epoch-ratio : {:}".format(epoch_ratio) | ||||
|         tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, inputs): | ||||
|         flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|         flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         flop_depth_probs = torch.flip( | ||||
|             torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1] | ||||
|         ) | ||||
|         selected_widths, selected_width_probs = select2withP( | ||||
|             self.width_attentions, self.tau | ||||
|         ) | ||||
|         selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|         with torch.no_grad(): | ||||
|             selected_widths = selected_widths.cpu() | ||||
|  | ||||
|         x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|         feature_maps = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             selected_w_index = selected_widths[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             selected_w_probs = selected_width_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             layer_prob = flop_width_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             x, expected_inC, expected_flop = layer( | ||||
|                 (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) | ||||
|             ) | ||||
|             feature_maps.append(x) | ||||
|             last_channel_idx += layer.num_conv | ||||
|             if i in self.depth_info:  # aggregate the information | ||||
|                 choices = self.depth_info[i]["choices"] | ||||
|                 xstagei = self.depth_info[i]["stage"] | ||||
|                 # print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist())) | ||||
|                 # for A, W in zip(choices, selected_depth_probs[xstagei]): | ||||
|                 #  print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W)) | ||||
|                 possible_tensors = [] | ||||
|                 max_C = max(feature_maps[A].size(1) for A in choices) | ||||
|                 for tempi, A in enumerate(choices): | ||||
|                     xtensor = ChannelWiseInter(feature_maps[A], max_C) | ||||
|                     possible_tensors.append(xtensor) | ||||
|                 weighted_sum = sum( | ||||
|                     xtensor * W | ||||
|                     for xtensor, W in zip( | ||||
|                         possible_tensors, selected_depth_probs[xstagei] | ||||
|                     ) | ||||
|                 ) | ||||
|                 x = weighted_sum | ||||
|  | ||||
|             if i in self.depth_at_i: | ||||
|                 xstagei, xatti = self.depth_at_i[i] | ||||
|                 x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop | ||||
|             else: | ||||
|                 x_expected_flop = expected_flop | ||||
|             flops.append(x_expected_flop) | ||||
|         flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6)) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = linear_forward(features, self.classifier) | ||||
|         return logits, torch.stack([sum(flops)]) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
| @@ -0,0 +1,466 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils import additive_func | ||||
| from .SoftSelect import select2withP, ChannelWiseInter | ||||
| from .SoftSelect import linear_forward | ||||
| from .SoftSelect import get_width_choices as get_choices | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|     iC = conv.in_channels | ||||
|     fill_size = list(inputs.size()) | ||||
|     fill_size[1] = iC - fill_size[1] | ||||
|     filled = torch.zeros(fill_size, device=inputs.device) | ||||
|     xinputs = torch.cat((inputs, filled), dim=1) | ||||
|     outputs = conv(xinputs) | ||||
|     selecteds = [outputs[:, :oC] for oC in choices] | ||||
|     return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__( | ||||
|         self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu | ||||
|     ): | ||||
|         super(ConvBNReLU, self).__init__() | ||||
|         self.InShape = None | ||||
|         self.OutShape = None | ||||
|         self.choices = get_choices(nOut) | ||||
|         self.register_buffer("choices_tensor", torch.Tensor(self.choices)) | ||||
|  | ||||
|         if has_avg: | ||||
|             self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|         else: | ||||
|             self.avg = None | ||||
|         self.conv = nn.Conv2d( | ||||
|             nIn, | ||||
|             nOut, | ||||
|             kernel_size=kernel, | ||||
|             stride=stride, | ||||
|             padding=padding, | ||||
|             dilation=1, | ||||
|             groups=1, | ||||
|             bias=bias, | ||||
|         ) | ||||
|         # if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|         # else       : self.bn  = None | ||||
|         self.has_bn = has_bn | ||||
|         self.BNs = nn.ModuleList() | ||||
|         for i, _out in enumerate(self.choices): | ||||
|             self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|         if has_relu: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         else: | ||||
|             self.relu = None | ||||
|         self.in_dim = nIn | ||||
|         self.out_dim = nOut | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_flops(self, channels, check_range=True, divide=1): | ||||
|         iC, oC = channels | ||||
|         if check_range: | ||||
|             assert ( | ||||
|                 iC <= self.conv.in_channels and oC <= self.conv.out_channels | ||||
|             ), "{:} vs {:}  |  {:} vs {:}".format( | ||||
|                 iC, self.conv.in_channels, oC, self.conv.out_channels | ||||
|             ) | ||||
|         assert ( | ||||
|             isinstance(self.InShape, tuple) and len(self.InShape) == 2 | ||||
|         ), "invalid in-shape : {:}".format(self.InShape) | ||||
|         assert ( | ||||
|             isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 | ||||
|         ), "invalid out-shape : {:}".format(self.OutShape) | ||||
|         # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|         conv_per_position_flops = ( | ||||
|             self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups | ||||
|         ) | ||||
|         all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|         flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|         if self.conv.bias is not None: | ||||
|             flops += all_positions / divide | ||||
|         return flops | ||||
|  | ||||
|     def get_range(self): | ||||
|         return [self.choices] | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|         index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|         probability = torch.squeeze(probability) | ||||
|         assert len(index) == 2, "invalid length : {:}".format(index) | ||||
|         # compute expected flop | ||||
|         # coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|         expected_outC = (self.choices_tensor * probability).sum() | ||||
|         expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         # convolutional layer | ||||
|         out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|         out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|         # merge | ||||
|         out_channel = max([x.size(1) for x in out_bns]) | ||||
|         outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|         outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|         out = outA * prob[0] + outB * prob[1] | ||||
|         # out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         return out, expected_outC, expected_flop | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.avg: | ||||
|             out = self.avg(inputs) | ||||
|         else: | ||||
|             out = inputs | ||||
|         conv = self.conv(out) | ||||
|         if self.has_bn: | ||||
|             out = self.BNs[-1](conv) | ||||
|         else: | ||||
|             out = conv | ||||
|         if self.relu: | ||||
|             out = self.relu(out) | ||||
|         else: | ||||
|             out = out | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|             self.OutShape = (out.size(-2), out.size(-1)) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class SimBlock(nn.Module): | ||||
|     expansion = 1 | ||||
|     num_conv = 1 | ||||
|  | ||||
|     def __init__(self, inplanes, planes, stride): | ||||
|         super(SimBlock, self).__init__() | ||||
|         assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) | ||||
|         self.conv = ConvBNReLU( | ||||
|             inplanes, | ||||
|             planes, | ||||
|             3, | ||||
|             stride, | ||||
|             1, | ||||
|             False, | ||||
|             has_avg=False, | ||||
|             has_bn=True, | ||||
|             has_relu=True, | ||||
|         ) | ||||
|         if stride == 2: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=True, | ||||
|                 has_bn=False, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         elif inplanes != planes: | ||||
|             self.downsample = ConvBNReLU( | ||||
|                 inplanes, | ||||
|                 planes, | ||||
|                 1, | ||||
|                 1, | ||||
|                 0, | ||||
|                 False, | ||||
|                 has_avg=False, | ||||
|                 has_bn=True, | ||||
|                 has_relu=False, | ||||
|             ) | ||||
|         else: | ||||
|             self.downsample = None | ||||
|         self.out_dim = planes | ||||
|         self.search_mode = "basic" | ||||
|  | ||||
|     def get_range(self): | ||||
|         return self.conv.get_range() | ||||
|  | ||||
|     def get_flops(self, channels): | ||||
|         assert len(channels) == 2, "invalid channels : {:}".format(channels) | ||||
|         flop_A = self.conv.get_flops([channels[0], channels[1]]) | ||||
|         if hasattr(self.downsample, "get_flops"): | ||||
|             flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|         else: | ||||
|             flop_C = 0 | ||||
|         if ( | ||||
|             channels[0] != channels[-1] and self.downsample is None | ||||
|         ):  # this short-cut will be added during the infer-train | ||||
|             flop_C = ( | ||||
|                 channels[0] | ||||
|                 * channels[-1] | ||||
|                 * self.conv.OutShape[0] | ||||
|                 * self.conv.OutShape[1] | ||||
|             ) | ||||
|         return flop_A + flop_C | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, tuple_inputs): | ||||
|         assert ( | ||||
|             isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 | ||||
|         ), "invalid type input : {:}".format(type(tuple_inputs)) | ||||
|         inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|         assert ( | ||||
|             indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1 | ||||
|         ), "invalid size : {:}, {:}, {:}".format( | ||||
|             indexes.size(), probs.size(), probability.size() | ||||
|         ) | ||||
|         out, expected_next_inC, expected_flop = self.conv( | ||||
|             (inputs, expected_inC, probability[0], indexes[0], probs[0]) | ||||
|         ) | ||||
|         if self.downsample is not None: | ||||
|             residual, _, expected_flop_c = self.downsample( | ||||
|                 (inputs, expected_inC, probability[-1], indexes[-1], probs[-1]) | ||||
|             ) | ||||
|         else: | ||||
|             residual, expected_flop_c = inputs, 0 | ||||
|         out = additive_func(residual, out) | ||||
|         return ( | ||||
|             nn.functional.relu(out, inplace=True), | ||||
|             expected_next_inC, | ||||
|             sum([expected_flop, expected_flop_c]), | ||||
|         ) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         basicblock = self.conv(inputs) | ||||
|         if self.downsample is not None: | ||||
|             residual = self.downsample(inputs) | ||||
|         else: | ||||
|             residual = inputs | ||||
|         out = additive_func(residual, basicblock) | ||||
|         return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class SearchWidthSimResNet(nn.Module): | ||||
|     def __init__(self, depth, num_classes): | ||||
|         super(SearchWidthSimResNet, self).__init__() | ||||
|  | ||||
|         assert ( | ||||
|             depth - 2 | ||||
|         ) % 3 == 0, "depth should be one of 5, 8, 11, 14, ... instead of {:}".format( | ||||
|             depth | ||||
|         ) | ||||
|         layer_blocks = (depth - 2) // 3 | ||||
|         self.message = ( | ||||
|             "SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}".format( | ||||
|                 depth, layer_blocks | ||||
|             ) | ||||
|         ) | ||||
|         self.num_classes = num_classes | ||||
|         self.channels = [16] | ||||
|         self.layers = nn.ModuleList( | ||||
|             [ | ||||
|                 ConvBNReLU( | ||||
|                     3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True | ||||
|                 ) | ||||
|             ] | ||||
|         ) | ||||
|         self.InShape = None | ||||
|         for stage in range(3): | ||||
|             for iL in range(layer_blocks): | ||||
|                 iC = self.channels[-1] | ||||
|                 planes = 16 * (2 ** stage) | ||||
|                 stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|                 module = SimBlock(iC, planes, stride) | ||||
|                 self.channels.append(module.out_dim) | ||||
|                 self.layers.append(module) | ||||
|                 self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( | ||||
|                     stage, | ||||
|                     iL, | ||||
|                     layer_blocks, | ||||
|                     len(self.layers) - 1, | ||||
|                     iC, | ||||
|                     module.out_dim, | ||||
|                     stride, | ||||
|                 ) | ||||
|  | ||||
|         self.avgpool = nn.AvgPool2d(8) | ||||
|         self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|         self.InShape = None | ||||
|         self.tau = -1 | ||||
|         self.search_mode = "basic" | ||||
|         # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|  | ||||
|         # parameters for width | ||||
|         self.Ranges = [] | ||||
|         self.layer2indexRange = [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             start_index = len(self.Ranges) | ||||
|             self.Ranges += layer.get_range() | ||||
|             self.layer2indexRange.append((start_index, len(self.Ranges))) | ||||
|         assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format( | ||||
|             len(self.Ranges) + 1, depth | ||||
|         ) | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "width_attentions", | ||||
|             nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))), | ||||
|         ) | ||||
|         nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|         self.apply(initialize_resnet) | ||||
|  | ||||
|     def arch_parameters(self): | ||||
|         return [self.width_attentions] | ||||
|  | ||||
|     def base_parameters(self): | ||||
|         return ( | ||||
|             list(self.layers.parameters()) | ||||
|             + list(self.avgpool.parameters()) | ||||
|             + list(self.classifier.parameters()) | ||||
|         ) | ||||
|  | ||||
|     def get_flop(self, mode, config_dict, extra_info): | ||||
|         if config_dict is not None: | ||||
|             config_dict = config_dict.copy() | ||||
|         # weights = [F.softmax(x, dim=0) for x in self.width_attentions] | ||||
|         channels = [3] | ||||
|         for i, weight in enumerate(self.width_attentions): | ||||
|             if mode == "genotype": | ||||
|                 with torch.no_grad(): | ||||
|                     probe = nn.functional.softmax(weight, dim=0) | ||||
|                     C = self.Ranges[i][torch.argmax(probe).item()] | ||||
|             elif mode == "max": | ||||
|                 C = self.Ranges[i][-1] | ||||
|             elif mode == "fix": | ||||
|                 C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) | ||||
|             elif mode == "random": | ||||
|                 assert isinstance(extra_info, float), "invalid extra_info : {:}".format( | ||||
|                     extra_info | ||||
|                 ) | ||||
|                 with torch.no_grad(): | ||||
|                     prob = nn.functional.softmax(weight, dim=0) | ||||
|                     approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) | ||||
|                     for j in range(prob.size(0)): | ||||
|                         prob[j] = 1 / ( | ||||
|                             abs(j - (approximate_C - self.Ranges[i][j])) + 0.2 | ||||
|                         ) | ||||
|                     C = self.Ranges[i][torch.multinomial(prob, 1, False).item()] | ||||
|             else: | ||||
|                 raise ValueError("invalid mode : {:}".format(mode)) | ||||
|             channels.append(C) | ||||
|         flop = 0 | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             s, e = self.layer2indexRange[i] | ||||
|             xchl = tuple(channels[s : e + 1]) | ||||
|             flop += layer.get_flops(xchl) | ||||
|         # the last fc layer | ||||
|         flop += channels[-1] * self.classifier.out_features | ||||
|         if config_dict is None: | ||||
|             return flop / 1e6 | ||||
|         else: | ||||
|             config_dict["xchannels"] = channels | ||||
|             config_dict["super_type"] = "infer-width" | ||||
|             config_dict["estimated_FLOP"] = flop / 1e6 | ||||
|             return flop / 1e6, config_dict | ||||
|  | ||||
|     def get_arch_info(self): | ||||
|         string = "for width, there are {:} attention probabilities.".format( | ||||
|             len(self.width_attentions) | ||||
|         ) | ||||
|         discrepancy = [] | ||||
|         with torch.no_grad(): | ||||
|             for i, att in enumerate(self.width_attentions): | ||||
|                 prob = nn.functional.softmax(att, dim=0) | ||||
|                 prob = prob.cpu() | ||||
|                 selc = prob.argmax().item() | ||||
|                 prob = prob.tolist() | ||||
|                 prob = ["{:.3f}".format(x) for x in prob] | ||||
|                 xstring = "{:03d}/{:03d}-th : {:}".format( | ||||
|                     i, len(self.width_attentions), " ".join(prob) | ||||
|                 ) | ||||
|                 logt = ["{:.3f}".format(x) for x in att.cpu().tolist()] | ||||
|                 xstring += "  ||  {:52s}".format(" ".join(logt)) | ||||
|                 prob = sorted([float(x) for x in prob]) | ||||
|                 disc = prob[-1] - prob[-2] | ||||
|                 xstring += "  || dis={:.2f} || select={:}/{:}".format( | ||||
|                     disc, selc, len(prob) | ||||
|                 ) | ||||
|                 discrepancy.append(disc) | ||||
|                 string += "\n{:}".format(xstring) | ||||
|         return string, discrepancy | ||||
|  | ||||
|     def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|         assert ( | ||||
|             epoch_ratio >= 0 and epoch_ratio <= 1 | ||||
|         ), "invalid epoch-ratio : {:}".format(epoch_ratio) | ||||
|         tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|         self.tau = tau | ||||
|  | ||||
|     def get_message(self): | ||||
|         return self.message | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.search_mode == "basic": | ||||
|             return self.basic_forward(inputs) | ||||
|         elif self.search_mode == "search": | ||||
|             return self.search_forward(inputs) | ||||
|         else: | ||||
|             raise ValueError("invalid search_mode = {:}".format(self.search_mode)) | ||||
|  | ||||
|     def search_forward(self, inputs): | ||||
|         flop_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|         selected_widths, selected_probs = select2withP(self.width_attentions, self.tau) | ||||
|         with torch.no_grad(): | ||||
|             selected_widths = selected_widths.cpu() | ||||
|  | ||||
|         x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             selected_w_index = selected_widths[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             selected_w_probs = selected_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             layer_prob = flop_probs[ | ||||
|                 last_channel_idx : last_channel_idx + layer.num_conv | ||||
|             ] | ||||
|             x, expected_inC, expected_flop = layer( | ||||
|                 (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) | ||||
|             ) | ||||
|             last_channel_idx += layer.num_conv | ||||
|             flops.append(expected_flop) | ||||
|         flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6)) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = linear_forward(features, self.classifier) | ||||
|         return logits, torch.stack([sum(flops)]) | ||||
|  | ||||
|     def basic_forward(self, inputs): | ||||
|         if self.InShape is None: | ||||
|             self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|         x = inputs | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             x = layer(x) | ||||
|         features = self.avgpool(x) | ||||
|         features = features.view(features.size(0), -1) | ||||
|         logits = self.classifier(features) | ||||
|         return features, logits | ||||
							
								
								
									
										128
									
								
								AutoDL-Projects/xautodl/models/shape_searchs/SoftSelect.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										128
									
								
								AutoDL-Projects/xautodl/models/shape_searchs/SoftSelect.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,128 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7): | ||||
|     if tau <= 0: | ||||
|         new_logits = logits | ||||
|         probs = nn.functional.softmax(new_logits, dim=1) | ||||
|     else: | ||||
|         while True:  # a trick to avoid the gumbels bug | ||||
|             gumbels = -torch.empty_like(logits).exponential_().log() | ||||
|             new_logits = (logits.log_softmax(dim=1) + gumbels) / tau | ||||
|             probs = nn.functional.softmax(new_logits, dim=1) | ||||
|             if ( | ||||
|                 (not torch.isinf(gumbels).any()) | ||||
|                 and (not torch.isinf(probs).any()) | ||||
|                 and (not torch.isnan(probs).any()) | ||||
|             ): | ||||
|                 break | ||||
|  | ||||
|     if just_prob: | ||||
|         return probs | ||||
|  | ||||
|     # with torch.no_grad(): # add eps for unexpected torch error | ||||
|     #  probs = nn.functional.softmax(new_logits, dim=1) | ||||
|     #  selected_index = torch.multinomial(probs + eps, 2, False) | ||||
|     with torch.no_grad():  # add eps for unexpected torch error | ||||
|         probs = probs.cpu() | ||||
|         selected_index = torch.multinomial(probs + eps, num, False).to(logits.device) | ||||
|     selected_logit = torch.gather(new_logits, 1, selected_index) | ||||
|     selcted_probs = nn.functional.softmax(selected_logit, dim=1) | ||||
|     return selected_index, selcted_probs | ||||
|  | ||||
|  | ||||
| def ChannelWiseInter(inputs, oC, mode="v2"): | ||||
|     if mode == "v1": | ||||
|         return ChannelWiseInterV1(inputs, oC) | ||||
|     elif mode == "v2": | ||||
|         return ChannelWiseInterV2(inputs, oC) | ||||
|     else: | ||||
|         raise ValueError("invalid mode : {:}".format(mode)) | ||||
|  | ||||
|  | ||||
| def ChannelWiseInterV1(inputs, oC): | ||||
|     assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size()) | ||||
|  | ||||
|     def start_index(a, b, c): | ||||
|         return int(math.floor(float(a * c) / b)) | ||||
|  | ||||
|     def end_index(a, b, c): | ||||
|         return int(math.ceil(float((a + 1) * c) / b)) | ||||
|  | ||||
|     batch, iC, H, W = inputs.size() | ||||
|     outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device) | ||||
|     if iC == oC: | ||||
|         return inputs | ||||
|     for ot in range(oC): | ||||
|         istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC) | ||||
|         values = inputs[:, istartT:iendT].mean(dim=1) | ||||
|         outputs[:, ot, :, :] = values | ||||
|     return outputs | ||||
|  | ||||
|  | ||||
| def ChannelWiseInterV2(inputs, oC): | ||||
|     assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size()) | ||||
|     batch, C, H, W = inputs.size() | ||||
|     if C == oC: | ||||
|         return inputs | ||||
|     else: | ||||
|         return nn.functional.adaptive_avg_pool3d(inputs, (oC, H, W)) | ||||
|     # inputs_5D = inputs.view(batch, 1, C, H, W) | ||||
|     # otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None) | ||||
|     # otputs    = otputs_5D.view(batch, oC, H, W) | ||||
|     # otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False) | ||||
|     # return otputs | ||||
|  | ||||
|  | ||||
| def linear_forward(inputs, linear): | ||||
|     if linear is None: | ||||
|         return inputs | ||||
|     iC = inputs.size(1) | ||||
|     weight = linear.weight[:, :iC] | ||||
|     if linear.bias is None: | ||||
|         bias = None | ||||
|     else: | ||||
|         bias = linear.bias | ||||
|     return nn.functional.linear(inputs, weight, bias) | ||||
|  | ||||
|  | ||||
| def get_width_choices(nOut): | ||||
|     xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] | ||||
|     if nOut is None: | ||||
|         return len(xsrange) | ||||
|     else: | ||||
|         Xs = [int(nOut * i) for i in xsrange] | ||||
|         # xs = [ int(nOut * i // 10) for i in range(2, 11)] | ||||
|         # Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1] | ||||
|         Xs = sorted(list(set(Xs))) | ||||
|         return tuple(Xs) | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth): | ||||
|     if nDepth is None: | ||||
|         return 3 | ||||
|     else: | ||||
|         assert nDepth >= 3, "nDepth should be greater than 2 vs {:}".format(nDepth) | ||||
|         if nDepth == 1: | ||||
|             return (1, 1, 1) | ||||
|         elif nDepth == 2: | ||||
|             return (1, 1, 2) | ||||
|         elif nDepth >= 3: | ||||
|             return (nDepth // 3, nDepth * 2 // 3, nDepth) | ||||
|         else: | ||||
|             raise ValueError("invalid Depth : {:}".format(nDepth)) | ||||
|  | ||||
|  | ||||
| def drop_path(x, drop_prob): | ||||
|     if drop_prob > 0.0: | ||||
|         keep_prob = 1.0 - drop_prob | ||||
|         mask = x.new_zeros(x.size(0), 1, 1, 1) | ||||
|         mask = mask.bernoulli_(keep_prob) | ||||
|         x = x * (mask / keep_prob) | ||||
|         # x.div_(keep_prob) | ||||
|         # x.mul_(mask) | ||||
|     return x | ||||
							
								
								
									
										9
									
								
								AutoDL-Projects/xautodl/models/shape_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								AutoDL-Projects/xautodl/models/shape_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,9 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from .SearchCifarResNet_width import SearchWidthCifarResNet | ||||
| from .SearchCifarResNet_depth import SearchDepthCifarResNet | ||||
| from .SearchCifarResNet import SearchShapeCifarResNet | ||||
| from .SearchSimResNet_width import SearchWidthSimResNet | ||||
| from .SearchImagenetResNet import SearchShapeImagenetResNet | ||||
| from .generic_size_tiny_cell_model import GenericNAS301Model | ||||
| @@ -0,0 +1,209 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| # Here, we utilized three techniques to search for the number of channels: | ||||
| # - channel-wise interpolation from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - masking + Gumbel-Softmax (mask_gumbel) from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - masking + sampling (mask_rl) from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | ||||
| from typing import List, Text, Any | ||||
| import random, torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from ..cell_infers.cells import InferCell | ||||
| from .SoftSelect import select2withP, ChannelWiseInter | ||||
|  | ||||
|  | ||||
| class GenericNAS301Model(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         candidate_Cs: List[int], | ||||
|         max_num_Cs: int, | ||||
|         genotype: Any, | ||||
|         num_classes: int, | ||||
|         affine: bool, | ||||
|         track_running_stats: bool, | ||||
|     ): | ||||
|         super(GenericNAS301Model, self).__init__() | ||||
|         self._max_num_Cs = max_num_Cs | ||||
|         self._candidate_Cs = candidate_Cs | ||||
|         if max_num_Cs % 3 != 2: | ||||
|             raise ValueError("invalid number of layers : {:}".format(max_num_Cs)) | ||||
|         self._num_stage = N = max_num_Cs // 3 | ||||
|         self._max_C = max(candidate_Cs) | ||||
|  | ||||
|         stem = nn.Sequential( | ||||
|             nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine), | ||||
|             nn.BatchNorm2d( | ||||
|                 self._max_C, affine=affine, track_running_stats=track_running_stats | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|         c_prev = self._max_C | ||||
|         self._cells = nn.ModuleList() | ||||
|         self._cells.append(stem) | ||||
|         for index, reduction in enumerate(layer_reductions): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(c_prev, self._max_C, 2, True) | ||||
|             else: | ||||
|                 cell = InferCell( | ||||
|                     genotype, c_prev, self._max_C, 1, affine, track_running_stats | ||||
|                 ) | ||||
|             self._cells.append(cell) | ||||
|             c_prev = cell.out_dim | ||||
|         self._num_layer = len(self._cells) | ||||
|  | ||||
|         self.lastact = nn.Sequential( | ||||
|             nn.BatchNorm2d( | ||||
|                 c_prev, affine=affine, track_running_stats=track_running_stats | ||||
|             ), | ||||
|             nn.ReLU(inplace=True), | ||||
|         ) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(c_prev, num_classes) | ||||
|         # algorithm related | ||||
|         self.register_buffer("_tau", torch.zeros(1)) | ||||
|         self._algo = None | ||||
|         self._warmup_ratio = None | ||||
|  | ||||
|     def set_algo(self, algo: Text): | ||||
|         # used for searching | ||||
|         assert self._algo is None, "This functioin can only be called once." | ||||
|         assert algo in ["mask_gumbel", "mask_rl", "tas"], "invalid algo : {:}".format( | ||||
|             algo | ||||
|         ) | ||||
|         self._algo = algo | ||||
|         self._arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(self._max_num_Cs, len(self._candidate_Cs)) | ||||
|         ) | ||||
|         # if algo == 'mask_gumbel' or algo == 'mask_rl': | ||||
|         self.register_buffer( | ||||
|             "_masks", torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs)) | ||||
|         ) | ||||
|         for i in range(len(self._candidate_Cs)): | ||||
|             self._masks.data[i, : self._candidate_Cs[i]] = 1 | ||||
|  | ||||
|     @property | ||||
|     def tau(self): | ||||
|         return self._tau | ||||
|  | ||||
|     def set_tau(self, tau): | ||||
|         self._tau.data[:] = tau | ||||
|  | ||||
|     @property | ||||
|     def warmup_ratio(self): | ||||
|         return self._warmup_ratio | ||||
|  | ||||
|     def set_warmup_ratio(self, ratio: float): | ||||
|         self._warmup_ratio = ratio | ||||
|  | ||||
|     @property | ||||
|     def weights(self): | ||||
|         xlist = list(self._cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) | ||||
|         xlist += list(self.global_pooling.parameters()) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     @property | ||||
|     def alphas(self): | ||||
|         return [self._arch_parameters] | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             return "arch-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self._arch_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|  | ||||
|     @property | ||||
|     def random(self): | ||||
|         cs = [] | ||||
|         for i in range(self._max_num_Cs): | ||||
|             index = random.randint(0, len(self._candidate_Cs) - 1) | ||||
|             cs.append(str(self._candidate_Cs[index])) | ||||
|         return ":".join(cs) | ||||
|  | ||||
|     @property | ||||
|     def genotype(self): | ||||
|         cs = [] | ||||
|         for i in range(self._max_num_Cs): | ||||
|             with torch.no_grad(): | ||||
|                 index = self._arch_parameters[i].argmax().item() | ||||
|                 cs.append(str(self._candidate_Cs[index])) | ||||
|         return ":".join(cs) | ||||
|  | ||||
|     def get_message(self) -> Text: | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self._cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self._cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         feature = inputs | ||||
|  | ||||
|         log_probs = [] | ||||
|         for i, cell in enumerate(self._cells): | ||||
|             feature = cell(feature) | ||||
|             # apply different searching algorithms | ||||
|             idx = max(0, i - 1) | ||||
|             if self._warmup_ratio is not None: | ||||
|                 if random.random() < self._warmup_ratio: | ||||
|                     mask = self._masks[-1] | ||||
|                 else: | ||||
|                     mask = self._masks[random.randint(0, len(self._masks) - 1)] | ||||
|                 feature = feature * mask.view(1, -1, 1, 1) | ||||
|             elif self._algo == "mask_gumbel": | ||||
|                 weights = nn.functional.gumbel_softmax( | ||||
|                     self._arch_parameters[idx : idx + 1], tau=self.tau, dim=-1 | ||||
|                 ) | ||||
|                 mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1) | ||||
|                 feature = feature * mask | ||||
|             elif self._algo == "tas": | ||||
|                 selected_cs, selected_probs = select2withP( | ||||
|                     self._arch_parameters[idx : idx + 1], self.tau, num=2 | ||||
|                 ) | ||||
|                 with torch.no_grad(): | ||||
|                     i1, i2 = selected_cs.cpu().view(-1).tolist() | ||||
|                 c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2] | ||||
|                 out_channel = max(c1, c2) | ||||
|                 out1 = ChannelWiseInter(feature[:, :c1], out_channel) | ||||
|                 out2 = ChannelWiseInter(feature[:, :c2], out_channel) | ||||
|                 out = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1] | ||||
|                 if feature.shape[1] == out.shape[1]: | ||||
|                     feature = out | ||||
|                 else: | ||||
|                     miss = torch.zeros( | ||||
|                         feature.shape[0], | ||||
|                         feature.shape[1] - out.shape[1], | ||||
|                         feature.shape[2], | ||||
|                         feature.shape[3], | ||||
|                         device=feature.device, | ||||
|                     ) | ||||
|                     feature = torch.cat((out, miss), dim=1) | ||||
|             elif self._algo == "mask_rl": | ||||
|                 prob = nn.functional.softmax( | ||||
|                     self._arch_parameters[idx : idx + 1], dim=-1 | ||||
|                 ) | ||||
|                 dist = torch.distributions.Categorical(prob) | ||||
|                 action = dist.sample() | ||||
|                 log_probs.append(dist.log_prob(action)) | ||||
|                 mask = self._masks[action.item()].view(1, -1, 1, 1) | ||||
|                 feature = feature * mask | ||||
|             else: | ||||
|                 raise ValueError("invalid algorithm : {:}".format(self._algo)) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits, log_probs | ||||
		Reference in New Issue
	
	Block a user