Compare commits

...

8 Commits

6 changed files with 231 additions and 11 deletions

5
.gitignore vendored
View File

@@ -1,3 +1,6 @@
__pycache__/
datasets/
./datasets/
swap_results.csv
swap_results_*
cifar-10*
NAS-Bench-201-*

75
analyze.py Normal file
View File

@@ -0,0 +1,75 @@
import csv
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
import argparse
def plot(l, thousands, filename):
lenth = len(l)
threshold = [0, 10000, 20000, 30000, 40000, 50000, 60000, 70000]
labels = ['0-10k', '10k-20k,', '20k-30k', '30k-40k', '40k-50k', '50k-60k', '60k-70k']
l = [i/lenth for i in l]
l = l[:7]
thousands = thousands[60:]
thousands_labels = [str(i) + 'k' for i in range(60, 70)]
plt.figure(figsize=(8, 6))
plt.subplots_adjust(top=0.85)
plt.title('Distribution of Swap Scores over 60k')
plt.bar(thousands_labels, thousands)
for i, v in enumerate(thousands):
plt.text(i, v + 0.01, str(v), ha='center', va='bottom')
plt.savefig(filename + '_60k.png')
datasets = filename.split('_')[-1].split('.')[0]
plt.figure(figsize=(8, 6))
plt.subplots_adjust(top=0.85)
# plt.ylim(0,0.3)
plt.title('Distribution of Swap Scores in ' + datasets)
plt.bar(labels, l)
for i, v in enumerate(l):
plt.text(i, v + 0.01, str(round(v, 2)), ha='center', va='bottom')
plt.savefig(filename)
def analyse(filename):
l = [0 for i in range(10)]
scores = []
count = 0
best_value = -1
with open(filename) as file:
reader = csv.reader(file)
header = next(reader)
data = [row for row in reader]
thousands = [0 for i in range(70)]
for row in data:
score = row[0]
best_value = max(best_value, float(score))
# print(score)
ind = float(score) // 10000
ind = int(ind)
l[ind] += 1
thousands[int(float(score) // 1000)] += 1
acc = row[1]
index = row[2]
datas = list(zip(score, acc, index))
scores.append(score)
print(max(scores))
results = pd.DataFrame(datas, columns=['swap_score', 'valid_acc', 'index'])
print(results['swap_score'].max())
print(best_value)
plot(l, thousands, filename + '.png')
return stats.spearmanr(results.swap_score, results.valid_acc)[0]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--filename', type=str, help='Filename to analyze', default='swap_results.csv')
args = parser.parse_args()
print(analyse('output' + '/' + args.filename))

View File

@@ -0,0 +1,69 @@
# import torch
# import torchvision
# import torchvision.transforms as transforms
# # 加载CIFAR-10数据集
# transform = transforms.Compose([transforms.ToTensor()])
# trainset = torchvision.datasets.CIFAR10(root='./datasets', train=True, download=True, transform=transform)
# trainloader = torch.utils.data.DataLoader(trainset, batch_size=10000, shuffle=False, num_workers=2)
# # 将所有数据加载到内存中
# data = next(iter(trainloader))
# images, _ = data
# # 计算每个通道的均值和标准差
# mean = images.mean([0, 2, 3])
# std = images.std([0, 2, 3])
# print(f'Mean: {mean}')
# print(f'Std: {std}')
# results:
# Mean: tensor([0.4935, 0.4834, 0.4472])
# Std: tensor([0.2476, 0.2446, 0.2626])
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import argparse
parser = argparse.ArgumentParser(description='Calculate mean and std of dataset')
parser.add_argument('--dataset', type=str, default='cifar10', help='dataset name')
parser.add_argument('--data_path', type=str, default='./datasets/cifar-10-batches-py', help='path to dataset image folder')
args = parser.parse_args()
# 设置数据集路径
dataset_path = args.data_path
dataset_name = args.dataset
# 设置数据集的transform这里只使用了ToTensor
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
# 使用ImageFolder加载数据集
dataset = datasets.ImageFolder(root=dataset_path, transform=transform)
dataloader = DataLoader(dataset, batch_size=64, shuffle=False, num_workers=4)
# 初始化变量来累积均值和标准差
mean = torch.zeros(3)
std = torch.zeros(3)
nb_samples = 0
count = 0
for data in dataloader:
count += 1
print(f'Processing batch {count}/{len(dataloader)}', end='\r')
batch_samples = data[0].size(0)
data = data[0].view(batch_samples, data[0].size(1), -1)
mean += data.mean(2).sum(0)
std += data.std(2).sum(0)
nb_samples += batch_samples
mean /= nb_samples
std /= nb_samples
print(f'Mean: {mean}')
print(f'Std: {std}')

View File

@@ -39,16 +39,17 @@ parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--device', default="cuda", type=str, nargs='?', help='setup device (cpu, mps or cuda)')
parser.add_argument('--repeats', default=32, type=int, nargs='?', help='times of calculating the training-free metric')
parser.add_argument('--input_samples', default=16, type=int, nargs='?', help='input batch size for training-free metric')
parser.add_argument('--datasets', default='cifar10', type=str, help='input datasets')
parser.add_argument('--start_index', default=0, type=int, help='start index of the networks to evaluate')
args = parser.parse_args()
if __name__ == "__main__":
device = torch.device(args.device)
# arch_info = pd.read_csv(args.data_path+'/DARTS_archs_CIFAR10.csv', names=['genotype', 'valid_acc'], sep=',')
train_data, _, _ = get_datasets('cifar10', args.data_path, (args.input_samples, 3, 32, 32), -1)
train_data, _, _ = get_datasets(args.datasets, args.data_path, (args.input_samples, 3, 32, 32), -1)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.input_samples, num_workers=0, pin_memory=True)
loader = iter(train_loader)
inputs, _ = next(loader)
@@ -57,18 +58,21 @@ if __name__ == "__main__":
# nasbench_len = 15625
nasbench_len = 15625
filename = f'output/swap_results_{args.datasets}.csv'
if args.datasets == 'aircraft':
api_datasets = 'cifar10'
# for index, i in arch_info.iterrows():
for ind in range(nasbench_len):
for ind in range(args.start_index,nasbench_len):
# print(f'Evaluating network: {index}')
print(f'Evaluating network: {ind}')
config = api.get_net_config(ind, 'cifar10')
config = api.get_net_config(ind, api_datasets)
network = get_cell_based_tiny_net(config)
# nas_results = api.query_by_index(i, 'cifar10')
# acc = nas_results[111].get_eval('ori-test')
nas_results = api.get_more_info(ind, 'cifar10', None, hp=200, is_random=False)
acc = nas_results['test-accuracy']
# nas_results = api.get_more_info(ind, api_datasets, None, hp=200, is_random=False)
# acc = nas_results['test-accuracy']
acc = 99
# print(type(network))
start_time = time.time()
@@ -97,6 +101,8 @@ if __name__ == "__main__":
print(f'Elapsed time: {end_time - start_time:.2f} seconds')
results.append([np.mean(swap_score), acc, ind])
with open(filename, 'a') as f:
f.write(f'{np.mean(swap_score)},{acc},{ind}\n')
results = pd.DataFrame(results, columns=['swap_score', 'valid_acc', 'index'])
results.to_csv('output/swap_results.csv', float_format='%.4f', index=False)

53
preprocess_aircraft.py Normal file
View File

@@ -0,0 +1,53 @@
import os
import shutil
# 数据集路径
dataset_path = '/mnt/Study/DataSet/DataSet/fgvc-aircraft-2013b/fgvc-aircraft-2013b/data/images'
test_output_path = '/mnt/Study/DataSet/DataSet/fgvc-aircraft-2013b/fgvc-aircraft-2013b/data/test_sorted_images'
train_output_path = '/mnt/Study/DataSet/DataSet/fgvc-aircraft-2013b/fgvc-aircraft-2013b/data/train_sorted_images'
# 类别文件,例如 'images_variant_trainval.txt'
# 有两个文件,一个是训练集和验证集,一个是测试集
test_labels_file = '/mnt/Study/DataSet/DataSet/fgvc-aircraft-2013b/fgvc-aircraft-2013b/data/images_variant_test.txt'
train_labels_file = '/mnt/Study/DataSet/DataSet/fgvc-aircraft-2013b/fgvc-aircraft-2013b/data/images_variant_train.txt'
# 创建输出文件夹
if not os.path.exists(test_output_path):
os.makedirs(test_output_path)
if not os.path.exists(train_output_path):
os.makedirs(train_output_path)
# 读取类别文件
with open(test_labels_file, 'r') as f:
test_lines = f.readlines()
with open(train_labels_file, 'r') as f:
train_lines = f.readlines()
def sort_images(lines, output_path):
count = 0
for line in lines:
count += 1
print(f'Processing image {count}/{len(lines)}', end='\r')
parts = line.strip().split(' ')
image_name = parts[0] + '.jpg'
category = '_'.join(parts[1:]).replace('/', '_')
# 创建类别文件夹
category_path = os.path.join(output_path, category)
if not os.path.exists(category_path):
os.makedirs(category_path)
# 移动图像到对应类别文件夹
src = os.path.join(dataset_path, image_name)
dst = os.path.join(category_path, image_name)
if os.path.exists(src):
shutil.move(src, dst)
else:
print(f'Image {image_name} not found!')
print("Sorting test images into folders by category...")
sort_images(test_lines, test_output_path)
print("Sorting train images into folders by category...")
sort_images(train_lines, train_output_path)
print("Images have been sorted into folders by category.")

View File

@@ -13,7 +13,8 @@ Dataset2Class = {'cifar10': 10,
'ImageNet16' : 1000,
'ImageNet16-120': 120,
'ImageNet16-150': 150,
'ImageNet16-200': 200}
'ImageNet16-200': 200,
'aircraft': 100}
class RandChannel(object):
# randomly pick channels from input
@@ -46,6 +47,10 @@ def get_datasets(name, root, input_size, cutout=-1):
elif name.startswith('ImageNet16'):
mean = [0.481098, 0.45749, 0.407882]
std = [0.247922, 0.240235, 0.255255]
elif name == 'aircraft':
mean = [0.4785, 0.5100, 0.5338]
std = [0.1845, 0.1830, 0.2060]
else:
raise TypeError("Unknow dataset : {:}".format(name))
@@ -55,6 +60,12 @@ def get_datasets(name, root, input_size, cutout=-1):
if cutout > 0 : lists += [CUTOUT(cutout)]
train_transform = transforms.Compose(lists)
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
elif name == 'aircraft':
lists = [transforms.RandomCrop(input_size[1], padding=0), transforms.ToTensor(), transforms.Normalize(mean, std)]
if cutout > 0 : lists += [CUTOUT(cutout)]
train_transform = transforms.Compose(lists)
test_transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor(), transforms.Normalize(mean, std)])
elif name.startswith('ImageNet16'):
lists = [transforms.RandomCrop(input_size[1], padding=0), transforms.ToTensor(), transforms.Normalize(mean, std), RandChannel(input_size[0])]
if cutout > 0 : lists += [CUTOUT(cutout)]
@@ -86,9 +97,12 @@ def get_datasets(name, root, input_size, cutout=-1):
train_data = dset.CIFAR100(root, train=True , transform=train_transform, download=True)
test_data = dset.CIFAR100(root, train=False, transform=test_transform , download=True)
assert len(train_data) == 50000 and len(test_data) == 10000
elif name == 'aircraft':
train_data = dset.ImageFolder(osp.join(root, 'train_sorted_images'), train_transform)
test_data = dset.ImageFolder(osp.join(root, 'test_sorted_images'), test_transform)
elif name.startswith('imagenet-1k'):
train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform)
test_data = dset.ImageFolder(osp.join(root, 'val'), test_transform)
test_data = dset.ImageFolder(osp.join(root, 'test'), test_transform)
elif name == 'ImageNet16':
root = osp.join(root, 'ImageNet16')
train_data = ImageNet16(root, True , train_transform)