| 
									
										
										
										
											2020-01-11 00:19:58 +11:00
										 |  |  | ############################################################### | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | # NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # | 
					
						
							| 
									
										
										
										
											2020-01-11 00:19:58 +11:00
										 |  |  | ############################################################### | 
					
						
							| 
									
										
										
										
											2020-02-23 10:30:37 +11:00
										 |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08           # | 
					
						
							| 
									
										
										
										
											2020-01-11 00:19:58 +11:00
										 |  |  | ############################################################### | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | import os, sys, time, torch, random, argparse | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from PIL import ImageFile | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | ImageFile.LOAD_TRUNCATED_IMAGES = True | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from copy import deepcopy | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | from pathlib import Path | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | 
					
						
							|  |  |  | if str(lib_dir) not in sys.path: | 
					
						
							|  |  |  |     sys.path.insert(0, str(lib_dir)) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | from config_utils import load_config | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from procedures import save_checkpoint, copy_checkpoint | 
					
						
							|  |  |  | from procedures import get_machine_info | 
					
						
							|  |  |  | from datasets import get_datasets | 
					
						
							|  |  |  | from log_utils import Logger, AverageMeter, time_string, convert_secs2time | 
					
						
							|  |  |  | from models import CellStructure, CellArchitectures, get_search_spaces | 
					
						
							|  |  |  | from functions import evaluate_for_seed | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  | def evaluate_all_datasets( | 
					
						
							|  |  |  |     arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger | 
					
						
							|  |  |  | ): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     machine_info, arch_config = get_machine_info(), deepcopy(arch_config) | 
					
						
							|  |  |  |     all_infos = {"info": machine_info} | 
					
						
							|  |  |  |     all_dataset_keys = [] | 
					
						
							|  |  |  |     # look all the datasets | 
					
						
							|  |  |  |     for dataset, xpath, split in zip(datasets, xpaths, splits): | 
					
						
							|  |  |  |         # train valid data | 
					
						
							|  |  |  |         train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | 
					
						
							|  |  |  |         # load the configuration | 
					
						
							|  |  |  |         if dataset == "cifar10" or dataset == "cifar100": | 
					
						
							|  |  |  |             if use_less: | 
					
						
							|  |  |  |                 config_path = "configs/nas-benchmark/LESS.config" | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 config_path = "configs/nas-benchmark/CIFAR.config" | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             split_info = load_config( | 
					
						
							|  |  |  |                 "configs/nas-benchmark/cifar-split.txt", None, None | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         elif dataset.startswith("ImageNet16"): | 
					
						
							|  |  |  |             if use_less: | 
					
						
							|  |  |  |                 config_path = "configs/nas-benchmark/LESS.config" | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 config_path = "configs/nas-benchmark/ImageNet-16.config" | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             split_info = load_config( | 
					
						
							|  |  |  |                 "configs/nas-benchmark/{:}-split.txt".format(dataset), None, None | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("invalid dataset : {:}".format(dataset)) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         config = load_config( | 
					
						
							|  |  |  |             config_path, {"class_num": class_num, "xshape": xshape}, logger | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         # check whether use splited validation set | 
					
						
							|  |  |  |         if bool(split): | 
					
						
							|  |  |  |             assert dataset == "cifar10" | 
					
						
							|  |  |  |             ValLoaders = { | 
					
						
							|  |  |  |                 "ori-test": torch.utils.data.DataLoader( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                     valid_data, | 
					
						
							|  |  |  |                     batch_size=config.batch_size, | 
					
						
							|  |  |  |                     shuffle=False, | 
					
						
							|  |  |  |                     num_workers=workers, | 
					
						
							|  |  |  |                     pin_memory=True, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 ) | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             assert len(train_data) == len(split_info.train) + len( | 
					
						
							|  |  |  |                 split_info.valid | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             ), "invalid length : {:} vs {:} + {:}".format( | 
					
						
							|  |  |  |                 len(train_data), len(split_info.train), len(split_info.valid) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             train_data_v2 = deepcopy(train_data) | 
					
						
							|  |  |  |             train_data_v2.transform = valid_data.transform | 
					
						
							|  |  |  |             valid_data = train_data_v2 | 
					
						
							|  |  |  |             # data loader | 
					
						
							|  |  |  |             train_loader = torch.utils.data.DataLoader( | 
					
						
							|  |  |  |                 train_data, | 
					
						
							|  |  |  |                 batch_size=config.batch_size, | 
					
						
							|  |  |  |                 sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), | 
					
						
							|  |  |  |                 num_workers=workers, | 
					
						
							|  |  |  |                 pin_memory=True, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             valid_loader = torch.utils.data.DataLoader( | 
					
						
							|  |  |  |                 valid_data, | 
					
						
							|  |  |  |                 batch_size=config.batch_size, | 
					
						
							|  |  |  |                 sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), | 
					
						
							|  |  |  |                 num_workers=workers, | 
					
						
							|  |  |  |                 pin_memory=True, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             ValLoaders["x-valid"] = valid_loader | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             # data loader | 
					
						
							|  |  |  |             train_loader = torch.utils.data.DataLoader( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 train_data, | 
					
						
							|  |  |  |                 batch_size=config.batch_size, | 
					
						
							|  |  |  |                 shuffle=True, | 
					
						
							|  |  |  |                 num_workers=workers, | 
					
						
							|  |  |  |                 pin_memory=True, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |             valid_loader = torch.utils.data.DataLoader( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 valid_data, | 
					
						
							|  |  |  |                 batch_size=config.batch_size, | 
					
						
							|  |  |  |                 shuffle=False, | 
					
						
							|  |  |  |                 num_workers=workers, | 
					
						
							|  |  |  |                 pin_memory=True, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |             if dataset == "cifar10": | 
					
						
							|  |  |  |                 ValLoaders = {"ori-test": valid_loader} | 
					
						
							|  |  |  |             elif dataset == "cifar100": | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 cifar100_splits = load_config( | 
					
						
							|  |  |  |                     "configs/nas-benchmark/cifar100-test-split.txt", None, None | 
					
						
							|  |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 ValLoaders = { | 
					
						
							|  |  |  |                     "ori-test": valid_loader, | 
					
						
							|  |  |  |                     "x-valid": torch.utils.data.DataLoader( | 
					
						
							|  |  |  |                         valid_data, | 
					
						
							|  |  |  |                         batch_size=config.batch_size, | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | 
					
						
							|  |  |  |                             cifar100_splits.xvalid | 
					
						
							|  |  |  |                         ), | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                         num_workers=workers, | 
					
						
							|  |  |  |                         pin_memory=True, | 
					
						
							|  |  |  |                     ), | 
					
						
							|  |  |  |                     "x-test": torch.utils.data.DataLoader( | 
					
						
							|  |  |  |                         valid_data, | 
					
						
							|  |  |  |                         batch_size=config.batch_size, | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | 
					
						
							|  |  |  |                             cifar100_splits.xtest | 
					
						
							|  |  |  |                         ), | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                         num_workers=workers, | 
					
						
							|  |  |  |                         pin_memory=True, | 
					
						
							|  |  |  |                     ), | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             elif dataset == "ImageNet16-120": | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 imagenet16_splits = load_config( | 
					
						
							|  |  |  |                     "configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None | 
					
						
							|  |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 ValLoaders = { | 
					
						
							|  |  |  |                     "ori-test": valid_loader, | 
					
						
							|  |  |  |                     "x-valid": torch.utils.data.DataLoader( | 
					
						
							|  |  |  |                         valid_data, | 
					
						
							|  |  |  |                         batch_size=config.batch_size, | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | 
					
						
							|  |  |  |                             imagenet16_splits.xvalid | 
					
						
							|  |  |  |                         ), | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                         num_workers=workers, | 
					
						
							|  |  |  |                         pin_memory=True, | 
					
						
							|  |  |  |                     ), | 
					
						
							|  |  |  |                     "x-test": torch.utils.data.DataLoader( | 
					
						
							|  |  |  |                         valid_data, | 
					
						
							|  |  |  |                         batch_size=config.batch_size, | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | 
					
						
							|  |  |  |                             imagenet16_splits.xtest | 
					
						
							|  |  |  |                         ), | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                         num_workers=workers, | 
					
						
							|  |  |  |                         pin_memory=True, | 
					
						
							|  |  |  |                     ), | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 raise ValueError("invalid dataset : {:}".format(dataset)) | 
					
						
							| 
									
										
										
										
											2019-12-02 18:03:40 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         dataset_key = "{:}".format(dataset) | 
					
						
							|  |  |  |         if bool(split): | 
					
						
							|  |  |  |             dataset_key = dataset_key + "-valid" | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 dataset_key, | 
					
						
							|  |  |  |                 len(train_data), | 
					
						
							|  |  |  |                 len(valid_data), | 
					
						
							|  |  |  |                 len(train_loader), | 
					
						
							|  |  |  |                 len(valid_loader), | 
					
						
							|  |  |  |                 config.batch_size, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         for key, value in ValLoaders.items(): | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             logger.log( | 
					
						
							|  |  |  |                 "Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value)) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         results = evaluate_for_seed( | 
					
						
							|  |  |  |             arch_config, config, arch, train_loader, ValLoaders, seed, logger | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         all_infos[dataset_key] = results | 
					
						
							|  |  |  |         all_dataset_keys.append(dataset_key) | 
					
						
							|  |  |  |     all_infos["all_dataset_keys"] = all_dataset_keys | 
					
						
							|  |  |  |     return all_infos | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | def main( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     save_dir, | 
					
						
							|  |  |  |     workers, | 
					
						
							|  |  |  |     datasets, | 
					
						
							|  |  |  |     xpaths, | 
					
						
							|  |  |  |     splits, | 
					
						
							|  |  |  |     use_less, | 
					
						
							|  |  |  |     srange, | 
					
						
							|  |  |  |     arch_index, | 
					
						
							|  |  |  |     seeds, | 
					
						
							|  |  |  |     cover_mode, | 
					
						
							|  |  |  |     meta_info, | 
					
						
							|  |  |  |     arch_config, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | ): | 
					
						
							|  |  |  |     assert torch.cuda.is_available(), "CUDA is not available." | 
					
						
							|  |  |  |     torch.backends.cudnn.enabled = True | 
					
						
							|  |  |  |     # torch.backends.cudnn.benchmark = True | 
					
						
							|  |  |  |     torch.backends.cudnn.deterministic = True | 
					
						
							|  |  |  |     torch.set_num_threads(workers) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     assert ( | 
					
						
							|  |  |  |         len(srange) == 2 and 0 <= srange[0] <= srange[1] | 
					
						
							|  |  |  |     ), "invalid srange : {:}".format(srange) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     if use_less: | 
					
						
							|  |  |  |         sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}-LESS".format( | 
					
						
							|  |  |  |             srange[0], srange[1], arch_config["channel"], arch_config["num_cells"] | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}".format( | 
					
						
							|  |  |  |             srange[0], srange[1], arch_config["channel"], arch_config["num_cells"] | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     logger = Logger(str(sub_dir), 0, False) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     all_archs = meta_info["archs"] | 
					
						
							|  |  |  |     assert srange[1] < meta_info["total"], "invalid range : {:}-{:} vs. {:}".format( | 
					
						
							|  |  |  |         srange[0], srange[1], meta_info["total"] | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     assert ( | 
					
						
							|  |  |  |         arch_index == -1 or srange[0] <= arch_index <= srange[1] | 
					
						
							|  |  |  |     ), "invalid range : {:} vs. {:} vs. {:}".format(srange[0], arch_index, srange[1]) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     if arch_index == -1: | 
					
						
							|  |  |  |         to_evaluate_indexes = list(range(srange[0], srange[1] + 1)) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         to_evaluate_indexes = [arch_index] | 
					
						
							|  |  |  |     logger.log("xargs : seeds      = {:}".format(seeds)) | 
					
						
							|  |  |  |     logger.log("xargs : arch_index = {:}".format(arch_index)) | 
					
						
							|  |  |  |     logger.log("xargs : cover_mode = {:}".format(cover_mode)) | 
					
						
							|  |  |  |     logger.log("-" * 100) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     logger.log( | 
					
						
							|  |  |  |         "Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}".format( | 
					
						
							|  |  |  |             srange[0], arch_index, srange[1], meta_info["total"], cover_mode | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}".format( | 
					
						
							|  |  |  |                 i, len(datasets), dataset, xpath, split | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     logger.log("--->>> architecture config : {:}".format(arch_config)) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     start_time, epoch_time = time.time(), AverageMeter() | 
					
						
							|  |  |  |     for i, index in enumerate(to_evaluate_indexes): | 
					
						
							|  |  |  |         arch = all_archs[index] | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 "-" * 15, | 
					
						
							|  |  |  |                 i, | 
					
						
							|  |  |  |                 len(to_evaluate_indexes), | 
					
						
							|  |  |  |                 index, | 
					
						
							|  |  |  |                 meta_info["total"], | 
					
						
							|  |  |  |                 seeds, | 
					
						
							|  |  |  |                 "-" * 15, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         # logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) | 
					
						
							|  |  |  |         logger.log("{:} {:} {:}".format("-" * 15, arch, "-" * 15)) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         # test this arch on different datasets with different seeds | 
					
						
							|  |  |  |         has_continue = False | 
					
						
							|  |  |  |         for seed in seeds: | 
					
						
							|  |  |  |             to_save_name = sub_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) | 
					
						
							|  |  |  |             if to_save_name.exists(): | 
					
						
							|  |  |  |                 if cover_mode: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                     logger.log( | 
					
						
							|  |  |  |                         "Find existing file : {:}, remove it before evaluation".format( | 
					
						
							|  |  |  |                             to_save_name | 
					
						
							|  |  |  |                         ) | 
					
						
							|  |  |  |                     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                     os.remove(str(to_save_name)) | 
					
						
							|  |  |  |                 else: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                     logger.log( | 
					
						
							|  |  |  |                         "Find existing file : {:}, skip this evaluation".format( | 
					
						
							|  |  |  |                             to_save_name | 
					
						
							|  |  |  |                         ) | 
					
						
							|  |  |  |                     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                     has_continue = True | 
					
						
							|  |  |  |                     continue | 
					
						
							|  |  |  |             results = evaluate_all_datasets( | 
					
						
							|  |  |  |                 CellStructure.str2structure(arch), | 
					
						
							|  |  |  |                 datasets, | 
					
						
							|  |  |  |                 xpaths, | 
					
						
							|  |  |  |                 splits, | 
					
						
							|  |  |  |                 use_less, | 
					
						
							|  |  |  |                 seed, | 
					
						
							|  |  |  |                 arch_config, | 
					
						
							|  |  |  |                 workers, | 
					
						
							|  |  |  |                 logger, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             torch.save(results, to_save_name) | 
					
						
							|  |  |  |             logger.log( | 
					
						
							|  |  |  |                 "{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                     "-" * 15, | 
					
						
							|  |  |  |                     i, | 
					
						
							|  |  |  |                     len(to_evaluate_indexes), | 
					
						
							|  |  |  |                     index, | 
					
						
							|  |  |  |                     meta_info["total"], | 
					
						
							|  |  |  |                     seed, | 
					
						
							|  |  |  |                     to_save_name, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 ) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         # measure elapsed time | 
					
						
							|  |  |  |         if not has_continue: | 
					
						
							|  |  |  |             epoch_time.update(time.time() - start_time) | 
					
						
							|  |  |  |         start_time = time.time() | 
					
						
							|  |  |  |         need_time = "Time Left: {:}".format( | 
					
						
							|  |  |  |             convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "This arch costs : {:}".format(convert_secs2time(epoch_time.val, True)) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         logger.log("{:}".format("*" * 100)) | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "{:}   {:74s}   {:}".format( | 
					
						
							|  |  |  |                 "*" * 10, | 
					
						
							|  |  |  |                 "{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format( | 
					
						
							|  |  |  |                     i, len(to_evaluate_indexes), index, meta_info["total"], need_time | 
					
						
							|  |  |  |                 ), | 
					
						
							|  |  |  |                 "*" * 10, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         logger.log("{:}".format("*" * 100)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     logger.close() | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  | def train_single_model( | 
					
						
							|  |  |  |     save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config | 
					
						
							|  |  |  | ): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     assert torch.cuda.is_available(), "CUDA is not available." | 
					
						
							|  |  |  |     torch.backends.cudnn.enabled = True | 
					
						
							|  |  |  |     torch.backends.cudnn.deterministic = True | 
					
						
							|  |  |  |     # torch.backends.cudnn.benchmark = True | 
					
						
							|  |  |  |     torch.set_num_threads(workers) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     save_dir = ( | 
					
						
							|  |  |  |         Path(save_dir) | 
					
						
							|  |  |  |         / "specifics" | 
					
						
							|  |  |  |         / "{:}-{:}-{:}-{:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             "LESS" if use_less else "FULL", | 
					
						
							|  |  |  |             model_str, | 
					
						
							|  |  |  |             arch_config["channel"], | 
					
						
							|  |  |  |             arch_config["num_cells"], | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     logger = Logger(str(save_dir), 0, False) | 
					
						
							|  |  |  |     if model_str in CellArchitectures: | 
					
						
							|  |  |  |         arch = CellArchitectures[model_str] | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "The model string is found in pre-defined architecture dict : {:}".format( | 
					
						
							|  |  |  |                 model_str | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  |     else: | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         try: | 
					
						
							|  |  |  |             arch = CellStructure.str2structure(model_str) | 
					
						
							|  |  |  |         except: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             raise ValueError( | 
					
						
							|  |  |  |                 "Invalid model string : {:}. It can not be found or parsed.".format( | 
					
						
							|  |  |  |                     model_str | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |     assert arch.check_valid_op( | 
					
						
							|  |  |  |         get_search_spaces("cell", "full") | 
					
						
							|  |  |  |     ), "{:} has the invalid op.".format(arch) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     logger.log("Start train-evaluate {:}".format(arch.tostr())) | 
					
						
							|  |  |  |     logger.log("arch_config : {:}".format(arch_config)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     start_time, seed_time = time.time(), AverageMeter() | 
					
						
							|  |  |  |     for _is, seed in enumerate(seeds): | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------".format( | 
					
						
							|  |  |  |                 _is, len(seeds), seed | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         to_save_name = save_dir / "seed-{:04d}.pth".format(seed) | 
					
						
							|  |  |  |         if to_save_name.exists(): | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             logger.log( | 
					
						
							|  |  |  |                 "Find the existing file {:}, directly load!".format(to_save_name) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             checkpoint = torch.load(to_save_name) | 
					
						
							|  |  |  |         else: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             logger.log( | 
					
						
							|  |  |  |                 "Does not find the existing file {:}, train and evaluate!".format( | 
					
						
							|  |  |  |                     to_save_name | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             checkpoint = evaluate_all_datasets( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 arch, | 
					
						
							|  |  |  |                 datasets, | 
					
						
							|  |  |  |                 xpaths, | 
					
						
							|  |  |  |                 splits, | 
					
						
							|  |  |  |                 use_less, | 
					
						
							|  |  |  |                 seed, | 
					
						
							|  |  |  |                 arch_config, | 
					
						
							|  |  |  |                 workers, | 
					
						
							|  |  |  |                 logger, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |             torch.save(checkpoint, to_save_name) | 
					
						
							|  |  |  |         # log information | 
					
						
							|  |  |  |         logger.log("{:}".format(checkpoint["info"])) | 
					
						
							|  |  |  |         all_dataset_keys = checkpoint["all_dataset_keys"] | 
					
						
							|  |  |  |         for dataset_key in all_dataset_keys: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             logger.log( | 
					
						
							|  |  |  |                 "\n{:} dataset : {:} {:}".format("-" * 15, dataset_key, "-" * 15) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             dataset_info = checkpoint[dataset_key] | 
					
						
							|  |  |  |             # logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             logger.log( | 
					
						
							|  |  |  |                 "Flops = {:} MB, Params = {:} MB".format( | 
					
						
							|  |  |  |                     dataset_info["flop"], dataset_info["param"] | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             logger.log("config : {:}".format(dataset_info["config"])) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             logger.log( | 
					
						
							|  |  |  |                 "Training State (finish) = {:}".format(dataset_info["finish-train"]) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             last_epoch = dataset_info["total_epoch"] - 1 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             train_acc1es, train_acc5es = ( | 
					
						
							|  |  |  |                 dataset_info["train_acc1es"], | 
					
						
							|  |  |  |                 dataset_info["train_acc5es"], | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             valid_acc1es, valid_acc5es = ( | 
					
						
							|  |  |  |                 dataset_info["valid_acc1es"], | 
					
						
							|  |  |  |                 dataset_info["valid_acc5es"], | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             logger.log( | 
					
						
							|  |  |  |                 "Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%".format( | 
					
						
							|  |  |  |                     train_acc1es[last_epoch], | 
					
						
							|  |  |  |                     train_acc5es[last_epoch], | 
					
						
							|  |  |  |                     100 - train_acc1es[last_epoch], | 
					
						
							|  |  |  |                     valid_acc1es[last_epoch], | 
					
						
							|  |  |  |                     valid_acc5es[last_epoch], | 
					
						
							|  |  |  |                     100 - valid_acc1es[last_epoch], | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         # measure elapsed time | 
					
						
							|  |  |  |         seed_time.update(time.time() - start_time) | 
					
						
							|  |  |  |         start_time = time.time() | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         need_time = "Time Left: {:}".format( | 
					
						
							|  |  |  |             convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}".format( | 
					
						
							|  |  |  |                 _is, len(seeds), seed, need_time | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     logger.close() | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def generate_meta_info(save_dir, max_node, divide=40): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     aa_nas_bench_ss = get_search_spaces("cell", "nas-bench-201") | 
					
						
							|  |  |  |     archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     print( | 
					
						
							|  |  |  |         "There are {:} archs vs {:}.".format( | 
					
						
							|  |  |  |             len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     random.seed(88)  # please do not change this line for reproducibility | 
					
						
							|  |  |  |     random.shuffle(archs) | 
					
						
							|  |  |  |     # to test fixed-random shuffle | 
					
						
							|  |  |  |     # print ('arch [0] : {:}\n---->>>>   {:}'.format( archs[0], archs[0].tostr() )) | 
					
						
							|  |  |  |     # print ('arch [9] : {:}\n---->>>>   {:}'.format( archs[9], archs[9].tostr() )) | 
					
						
							|  |  |  |     assert ( | 
					
						
							|  |  |  |         archs[0].tostr() | 
					
						
							|  |  |  |         == "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|" | 
					
						
							|  |  |  |     ), "please check the 0-th architecture : {:}".format(archs[0]) | 
					
						
							|  |  |  |     assert ( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         archs[9].tostr() | 
					
						
							|  |  |  |         == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|" | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ), "please check the 9-th architecture : {:}".format(archs[9]) | 
					
						
							|  |  |  |     assert ( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         archs[123].tostr() | 
					
						
							|  |  |  |         == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|" | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ), "please check the 123-th architecture : {:}".format(archs[123]) | 
					
						
							|  |  |  |     total_arch = len(archs) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     num = 50000 | 
					
						
							|  |  |  |     indexes_5W = list(range(num)) | 
					
						
							|  |  |  |     random.seed(1021) | 
					
						
							|  |  |  |     random.shuffle(indexes_5W) | 
					
						
							|  |  |  |     train_split = sorted(list(set(indexes_5W[: num // 2]))) | 
					
						
							|  |  |  |     valid_split = sorted(list(set(indexes_5W[num // 2 :]))) | 
					
						
							|  |  |  |     assert len(train_split) + len(valid_split) == num | 
					
						
							|  |  |  |     assert ( | 
					
						
							|  |  |  |         train_split[0] == 0 | 
					
						
							|  |  |  |         and train_split[10] == 26 | 
					
						
							|  |  |  |         and train_split[111] == 203 | 
					
						
							|  |  |  |         and valid_split[0] == 1 | 
					
						
							|  |  |  |         and valid_split[10] == 18 | 
					
						
							|  |  |  |         and valid_split[111] == 242 | 
					
						
							|  |  |  |     ), "{:} {:} {:} - {:} {:} {:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         train_split[0], | 
					
						
							|  |  |  |         train_split[10], | 
					
						
							|  |  |  |         train_split[111], | 
					
						
							|  |  |  |         valid_split[0], | 
					
						
							|  |  |  |         valid_split[10], | 
					
						
							|  |  |  |         valid_split[111], | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     splits = {num: {"train": train_split, "valid": valid_split}} | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     info = { | 
					
						
							|  |  |  |         "archs": [x.tostr() for x in archs], | 
					
						
							|  |  |  |         "total": total_arch, | 
					
						
							|  |  |  |         "max_node": max_node, | 
					
						
							|  |  |  |         "splits": splits, | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     save_dir = Path(save_dir) | 
					
						
							|  |  |  |     save_dir.mkdir(parents=True, exist_ok=True) | 
					
						
							|  |  |  |     save_name = save_dir / "meta-node-{:}.pth".format(max_node) | 
					
						
							|  |  |  |     assert not save_name.exists(), "{:} already exist".format(save_name) | 
					
						
							|  |  |  |     torch.save(info, save_name) | 
					
						
							|  |  |  |     print("save the meta file into {:}".format(save_name)) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     script_name_full = save_dir / "BENCH-201-N{:}.opt-full.script".format(max_node) | 
					
						
							|  |  |  |     script_name_less = save_dir / "BENCH-201-N{:}.opt-less.script".format(max_node) | 
					
						
							|  |  |  |     full_file = open(str(script_name_full), "w") | 
					
						
							|  |  |  |     less_file = open(str(script_name_less), "w") | 
					
						
							|  |  |  |     gaps = total_arch // divide | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  |     for start in range(0, total_arch, gaps): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         xend = min(start + gaps, total_arch) | 
					
						
							|  |  |  |         full_file.write( | 
					
						
							|  |  |  |             "bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 '777 888 999'\n".format( | 
					
						
							|  |  |  |                 start, xend - 1 | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         less_file.write( | 
					
						
							|  |  |  |             "bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 '777 888 999'\n".format( | 
					
						
							|  |  |  |                 start, xend - 1 | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     print( | 
					
						
							|  |  |  |         "save the training script into {:} and {:}".format( | 
					
						
							|  |  |  |             script_name_full, script_name_less | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     full_file.close() | 
					
						
							|  |  |  |     less_file.close() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     script_name = save_dir / "meta-node-{:}.cal-script.txt".format(max_node) | 
					
						
							|  |  |  |     macro = "OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0" | 
					
						
							|  |  |  |     with open(str(script_name), "w") as cfile: | 
					
						
							|  |  |  |         for start in range(0, total_arch, gaps): | 
					
						
							|  |  |  |             xend = min(start + gaps, total_arch) | 
					
						
							|  |  |  |             cfile.write( | 
					
						
							|  |  |  |                 "{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n".format( | 
					
						
							|  |  |  |                     macro, start, xend - 1 | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |     print("save the post-processing script into {:}".format(script_name)) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  |     # mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | 
					
						
							|  |  |  |     # parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         description="NAS-Bench-201", | 
					
						
							|  |  |  |         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument("--mode", type=str, required=True, help="The script mode.") | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--save_dir", type=str, help="Folder to save checkpoints and log." | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     parser.add_argument("--max_node", type=int, help="The maximum node in a cell.") | 
					
						
							|  |  |  |     # use for train the model | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "--workers", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=8, | 
					
						
							|  |  |  |         help="number of data loading workers (default: 2)", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--srange", type=int, nargs="+", help="The range of models to be evaluated" | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--arch_index", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=-1, | 
					
						
							|  |  |  |         help="The architecture index to be evaluated (cover mode).", | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.") | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--xpaths", type=str, nargs="+", help="The root path for this dataset." | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--splits", type=int, nargs="+", help="The root path for this dataset." | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--use_less", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=0, | 
					
						
							|  |  |  |         choices=[0, 1], | 
					
						
							|  |  |  |         help="Using the less-training-epoch config.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--seeds", type=int, nargs="+", help="The range of models to be evaluated" | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     parser.add_argument("--channel", type=int, help="The number of channels.") | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--num_cells", type=int, help="The number of cells in one stage." | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     args = parser.parse_args() | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     assert args.mode in ["meta", "new", "cover"] or args.mode.startswith( | 
					
						
							|  |  |  |         "specific-" | 
					
						
							|  |  |  |     ), "invalid mode : {:}".format(args.mode) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     if args.mode == "meta": | 
					
						
							|  |  |  |         generate_meta_info(args.save_dir, args.max_node) | 
					
						
							|  |  |  |     elif args.mode.startswith("specific"): | 
					
						
							|  |  |  |         assert len(args.mode.split("-")) == 2, "invalid mode : {:}".format(args.mode) | 
					
						
							|  |  |  |         model_str = args.mode.split("-")[1] | 
					
						
							|  |  |  |         train_single_model( | 
					
						
							|  |  |  |             args.save_dir, | 
					
						
							|  |  |  |             args.workers, | 
					
						
							|  |  |  |             args.datasets, | 
					
						
							|  |  |  |             args.xpaths, | 
					
						
							|  |  |  |             args.splits, | 
					
						
							|  |  |  |             args.use_less > 0, | 
					
						
							|  |  |  |             tuple(args.seeds), | 
					
						
							|  |  |  |             model_str, | 
					
						
							|  |  |  |             {"channel": args.channel, "num_cells": args.num_cells}, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         meta_path = Path(args.save_dir) / "meta-node-{:}.pth".format(args.max_node) | 
					
						
							|  |  |  |         assert meta_path.exists(), "{:} does not exist.".format(meta_path) | 
					
						
							|  |  |  |         meta_info = torch.load(meta_path) | 
					
						
							|  |  |  |         # check whether args is ok | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         assert ( | 
					
						
							|  |  |  |             len(args.srange) == 2 and args.srange[0] <= args.srange[1] | 
					
						
							|  |  |  |         ), "invalid length of srange args: {:}".format(args.srange) | 
					
						
							|  |  |  |         assert len(args.seeds) > 0, "invalid length of seeds args: {:}".format( | 
					
						
							|  |  |  |             args.seeds | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         assert ( | 
					
						
							|  |  |  |             len(args.datasets) == len(args.xpaths) == len(args.splits) | 
					
						
							|  |  |  |         ), "invalid infos : {:} vs {:} vs {:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             len(args.datasets), len(args.xpaths), len(args.splits) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         assert args.workers > 0, "invalid number of workers : {:}".format(args.workers) | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         main( | 
					
						
							|  |  |  |             args.save_dir, | 
					
						
							|  |  |  |             args.workers, | 
					
						
							|  |  |  |             args.datasets, | 
					
						
							|  |  |  |             args.xpaths, | 
					
						
							|  |  |  |             args.splits, | 
					
						
							|  |  |  |             args.use_less > 0, | 
					
						
							|  |  |  |             tuple(args.srange), | 
					
						
							|  |  |  |             args.arch_index, | 
					
						
							|  |  |  |             tuple(args.seeds), | 
					
						
							|  |  |  |             args.mode == "cover", | 
					
						
							|  |  |  |             meta_info, | 
					
						
							|  |  |  |             {"channel": args.channel, "num_cells": args.num_cells}, | 
					
						
							|  |  |  |         ) |