| 
									
										
										
										
											2020-02-23 10:30:37 +11:00
										 |  |  | ##################################################### | 
					
						
							|  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | 
					
						
							|  |  |  | ##################################################### | 
					
						
							| 
									
										
										
										
											2019-12-20 20:41:49 +11:00
										 |  |  | import os, sys, time, argparse, collections | 
					
						
							|  |  |  | from copy import deepcopy | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | from pathlib import Path | 
					
						
							|  |  |  | from collections import defaultdict | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | 
					
						
							|  |  |  | if str(lib_dir) not in sys.path: | 
					
						
							|  |  |  |     sys.path.insert(0, str(lib_dir)) | 
					
						
							|  |  |  | from log_utils import AverageMeter, time_string, convert_secs2time | 
					
						
							| 
									
										
										
										
											2019-12-20 20:41:49 +11:00
										 |  |  | from config_utils import load_config, dict2config | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from datasets import get_datasets | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | # NAS-Bench-201 related module or function | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from models import CellStructure, get_cell_based_tiny_net | 
					
						
							|  |  |  | from nas_201_api import ArchResults, ResultsCount | 
					
						
							|  |  |  | from procedures import bench_pure_evaluate as pure_evaluate | 
					
						
							| 
									
										
										
										
											2019-12-20 20:41:49 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def create_result_count(used_seed, dataset, arch_config, results, dataloader_dict): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     xresult = ResultsCount( | 
					
						
							|  |  |  |         dataset, | 
					
						
							|  |  |  |         results["net_state_dict"], | 
					
						
							|  |  |  |         results["train_acc1es"], | 
					
						
							|  |  |  |         results["train_losses"], | 
					
						
							|  |  |  |         results["param"], | 
					
						
							|  |  |  |         results["flop"], | 
					
						
							|  |  |  |         arch_config, | 
					
						
							|  |  |  |         used_seed, | 
					
						
							|  |  |  |         results["total_epoch"], | 
					
						
							|  |  |  |         None, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     net_config = dict2config( | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |             "name": "infer.tiny", | 
					
						
							|  |  |  |             "C": arch_config["channel"], | 
					
						
							|  |  |  |             "N": arch_config["num_cells"], | 
					
						
							|  |  |  |             "genotype": CellStructure.str2structure(arch_config["arch_str"]), | 
					
						
							|  |  |  |             "num_classes": arch_config["class_num"], | 
					
						
							|  |  |  |         }, | 
					
						
							|  |  |  |         None, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     network = get_cell_based_tiny_net(net_config) | 
					
						
							|  |  |  |     network.load_state_dict(xresult.get_net_param()) | 
					
						
							|  |  |  |     if "train_times" in results:  # new version | 
					
						
							|  |  |  |         xresult.update_train_info( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             results["train_acc1es"], | 
					
						
							|  |  |  |             results["train_acc5es"], | 
					
						
							|  |  |  |             results["train_losses"], | 
					
						
							|  |  |  |             results["train_times"], | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         xresult.update_eval( | 
					
						
							|  |  |  |             results["valid_acc1es"], results["valid_losses"], results["valid_times"] | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ) | 
					
						
							| 
									
										
										
										
											2019-12-20 20:41:49 +11:00
										 |  |  |     else: | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         if dataset == "cifar10-valid": | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             xresult.update_OLD_eval( | 
					
						
							|  |  |  |                 "x-valid", results["valid_acc1es"], results["valid_losses"] | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             loss, top1, top5, latencies = pure_evaluate( | 
					
						
							|  |  |  |                 dataloader_dict["{:}@{:}".format("cifar10", "test")], network.cuda() | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             xresult.update_OLD_eval( | 
					
						
							|  |  |  |                 "ori-test", | 
					
						
							|  |  |  |                 {results["total_epoch"] - 1: top1}, | 
					
						
							|  |  |  |                 {results["total_epoch"] - 1: loss}, | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             xresult.update_latency(latencies) | 
					
						
							|  |  |  |         elif dataset == "cifar10": | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             xresult.update_OLD_eval( | 
					
						
							|  |  |  |                 "ori-test", results["valid_acc1es"], results["valid_losses"] | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             loss, top1, top5, latencies = pure_evaluate( | 
					
						
							|  |  |  |                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda() | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             xresult.update_latency(latencies) | 
					
						
							|  |  |  |         elif dataset == "cifar100" or dataset == "ImageNet16-120": | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             xresult.update_OLD_eval( | 
					
						
							|  |  |  |                 "ori-test", results["valid_acc1es"], results["valid_losses"] | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             loss, top1, top5, latencies = pure_evaluate( | 
					
						
							|  |  |  |                 dataloader_dict["{:}@{:}".format(dataset, "valid")], network.cuda() | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             xresult.update_OLD_eval( | 
					
						
							|  |  |  |                 "x-valid", | 
					
						
							|  |  |  |                 {results["total_epoch"] - 1: top1}, | 
					
						
							|  |  |  |                 {results["total_epoch"] - 1: loss}, | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             loss, top1, top5, latencies = pure_evaluate( | 
					
						
							|  |  |  |                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda() | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             xresult.update_OLD_eval( | 
					
						
							|  |  |  |                 "x-test", | 
					
						
							|  |  |  |                 {results["total_epoch"] - 1: top1}, | 
					
						
							|  |  |  |                 {results["total_epoch"] - 1: loss}, | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             xresult.update_latency(latencies) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("invalid dataset name : {:}".format(dataset)) | 
					
						
							|  |  |  |     return xresult | 
					
						
							| 
									
										
										
										
											2019-12-20 20:41:49 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     information = ArchResults(arch_index, arch_str) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for checkpoint_path in checkpoints: | 
					
						
							|  |  |  |         checkpoint = torch.load(checkpoint_path, map_location="cpu") | 
					
						
							|  |  |  |         used_seed = checkpoint_path.name.split("-")[-1].split(".")[0] | 
					
						
							|  |  |  |         for dataset in datasets: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             assert ( | 
					
						
							|  |  |  |                 dataset in checkpoint | 
					
						
							|  |  |  |             ), "Can not find {:} in arch-{:} from {:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 dataset, arch_index, checkpoint_path | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             results = checkpoint[dataset] | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             assert results[ | 
					
						
							|  |  |  |                 "finish-train" | 
					
						
							|  |  |  |             ], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 arch_index, used_seed, dataset, checkpoint_path | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             arch_config = { | 
					
						
							|  |  |  |                 "channel": results["channel"], | 
					
						
							|  |  |  |                 "num_cells": results["num_cells"], | 
					
						
							|  |  |  |                 "arch_str": arch_str, | 
					
						
							|  |  |  |                 "class_num": results["config"]["class_num"], | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             xresult = create_result_count( | 
					
						
							|  |  |  |                 used_seed, dataset, arch_config, results, dataloader_dict | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             information.update(dataset, int(used_seed), xresult) | 
					
						
							|  |  |  |     return information | 
					
						
							| 
									
										
										
										
											2019-12-20 20:41:49 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def GET_DataLoaders(workers): | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     torch.set_num_threads(workers) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     root_dir = (Path(__file__).parent / ".." / "..").resolve() | 
					
						
							|  |  |  |     torch_dir = Path(os.environ["TORCH_HOME"]) | 
					
						
							|  |  |  |     # cifar | 
					
						
							|  |  |  |     cifar_config_path = root_dir / "configs" / "nas-benchmark" / "CIFAR.config" | 
					
						
							|  |  |  |     cifar_config = load_config(cifar_config_path, None, None) | 
					
						
							|  |  |  |     print("{:} Create data-loader for all datasets".format(time_string())) | 
					
						
							|  |  |  |     print("-" * 200) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets( | 
					
						
							|  |  |  |         "cifar10", str(torch_dir / "cifar.python"), -1 | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     print( | 
					
						
							|  |  |  |         "original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | 
					
						
							|  |  |  |             len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     cifar10_splits = load_config( | 
					
						
							|  |  |  |         root_dir / "configs" / "nas-benchmark" / "cifar-split.txt", None, None | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     assert cifar10_splits.train[:10] == [ | 
					
						
							|  |  |  |         0, | 
					
						
							|  |  |  |         5, | 
					
						
							|  |  |  |         7, | 
					
						
							|  |  |  |         11, | 
					
						
							|  |  |  |         13, | 
					
						
							|  |  |  |         15, | 
					
						
							|  |  |  |         16, | 
					
						
							|  |  |  |         17, | 
					
						
							|  |  |  |         20, | 
					
						
							|  |  |  |         24, | 
					
						
							|  |  |  |     ] and cifar10_splits.valid[:10] == [ | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         1, | 
					
						
							|  |  |  |         2, | 
					
						
							|  |  |  |         3, | 
					
						
							|  |  |  |         4, | 
					
						
							|  |  |  |         6, | 
					
						
							|  |  |  |         8, | 
					
						
							|  |  |  |         9, | 
					
						
							|  |  |  |         10, | 
					
						
							|  |  |  |         12, | 
					
						
							|  |  |  |         14, | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  |     temp_dataset = deepcopy(TRAIN_CIFAR10) | 
					
						
							|  |  |  |     temp_dataset.transform = VALID_CIFAR10.transform | 
					
						
							|  |  |  |     # data loader | 
					
						
							|  |  |  |     trainval_cifar10_loader = torch.utils.data.DataLoader( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         TRAIN_CIFAR10, | 
					
						
							|  |  |  |         batch_size=cifar_config.batch_size, | 
					
						
							|  |  |  |         shuffle=True, | 
					
						
							|  |  |  |         num_workers=workers, | 
					
						
							|  |  |  |         pin_memory=True, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     train_cifar10_loader = torch.utils.data.DataLoader( | 
					
						
							|  |  |  |         TRAIN_CIFAR10, | 
					
						
							|  |  |  |         batch_size=cifar_config.batch_size, | 
					
						
							|  |  |  |         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), | 
					
						
							|  |  |  |         num_workers=workers, | 
					
						
							|  |  |  |         pin_memory=True, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     valid_cifar10_loader = torch.utils.data.DataLoader( | 
					
						
							|  |  |  |         temp_dataset, | 
					
						
							|  |  |  |         batch_size=cifar_config.batch_size, | 
					
						
							|  |  |  |         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), | 
					
						
							|  |  |  |         num_workers=workers, | 
					
						
							|  |  |  |         pin_memory=True, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     test__cifar10_loader = torch.utils.data.DataLoader( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         VALID_CIFAR10, | 
					
						
							|  |  |  |         batch_size=cifar_config.batch_size, | 
					
						
							|  |  |  |         shuffle=False, | 
					
						
							|  |  |  |         num_workers=workers, | 
					
						
							|  |  |  |         pin_memory=True, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "CIFAR-10  : trval-loader has {:3d} batch with {:} per batch".format( | 
					
						
							|  |  |  |             len(trainval_cifar10_loader), cifar_config.batch_size | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "CIFAR-10  : train-loader has {:3d} batch with {:} per batch".format( | 
					
						
							|  |  |  |             len(train_cifar10_loader), cifar_config.batch_size | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "CIFAR-10  : valid-loader has {:3d} batch with {:} per batch".format( | 
					
						
							|  |  |  |             len(valid_cifar10_loader), cifar_config.batch_size | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "CIFAR-10  : test--loader has {:3d} batch with {:} per batch".format( | 
					
						
							|  |  |  |             len(test__cifar10_loader), cifar_config.batch_size | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     print("-" * 200) | 
					
						
							|  |  |  |     # CIFAR-100 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets( | 
					
						
							|  |  |  |         "cifar100", str(torch_dir / "cifar.python"), -1 | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     print( | 
					
						
							|  |  |  |         "original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | 
					
						
							|  |  |  |             len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     cifar100_splits = load_config( | 
					
						
							|  |  |  |         root_dir / "configs" / "nas-benchmark" / "cifar100-test-split.txt", None, None | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     assert cifar100_splits.xvalid[:10] == [ | 
					
						
							|  |  |  |         1, | 
					
						
							|  |  |  |         3, | 
					
						
							|  |  |  |         4, | 
					
						
							|  |  |  |         5, | 
					
						
							|  |  |  |         8, | 
					
						
							|  |  |  |         10, | 
					
						
							|  |  |  |         13, | 
					
						
							|  |  |  |         14, | 
					
						
							|  |  |  |         15, | 
					
						
							|  |  |  |         16, | 
					
						
							|  |  |  |     ] and cifar100_splits.xtest[:10] == [ | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         0, | 
					
						
							|  |  |  |         2, | 
					
						
							|  |  |  |         6, | 
					
						
							|  |  |  |         7, | 
					
						
							|  |  |  |         9, | 
					
						
							|  |  |  |         11, | 
					
						
							|  |  |  |         12, | 
					
						
							|  |  |  |         17, | 
					
						
							|  |  |  |         20, | 
					
						
							|  |  |  |         24, | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  |     train_cifar100_loader = torch.utils.data.DataLoader( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         TRAIN_CIFAR100, | 
					
						
							|  |  |  |         batch_size=cifar_config.batch_size, | 
					
						
							|  |  |  |         shuffle=True, | 
					
						
							|  |  |  |         num_workers=workers, | 
					
						
							|  |  |  |         pin_memory=True, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     valid_cifar100_loader = torch.utils.data.DataLoader( | 
					
						
							|  |  |  |         VALID_CIFAR100, | 
					
						
							|  |  |  |         batch_size=cifar_config.batch_size, | 
					
						
							|  |  |  |         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), | 
					
						
							|  |  |  |         num_workers=workers, | 
					
						
							|  |  |  |         pin_memory=True, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     test__cifar100_loader = torch.utils.data.DataLoader( | 
					
						
							|  |  |  |         VALID_CIFAR100, | 
					
						
							|  |  |  |         batch_size=cifar_config.batch_size, | 
					
						
							|  |  |  |         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest), | 
					
						
							|  |  |  |         num_workers=workers, | 
					
						
							|  |  |  |         pin_memory=True, | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     print( | 
					
						
							|  |  |  |         "CIFAR-100  : train-loader has {:3d} batch".format(len(train_cifar100_loader)) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "CIFAR-100  : valid-loader has {:3d} batch".format(len(valid_cifar100_loader)) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "CIFAR-100  : test--loader has {:3d} batch".format(len(test__cifar100_loader)) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     print("-" * 200) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     imagenet16_config_path = "configs/nas-benchmark/ImageNet-16.config" | 
					
						
							|  |  |  |     imagenet16_config = load_config(imagenet16_config_path, None, None) | 
					
						
							|  |  |  |     TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets( | 
					
						
							|  |  |  |         "ImageNet16-120", str(torch_dir / "cifar.python" / "ImageNet16"), -1 | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | 
					
						
							|  |  |  |             len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     imagenet_splits = load_config( | 
					
						
							|  |  |  |         root_dir / "configs" / "nas-benchmark" / "imagenet-16-120-test-split.txt", | 
					
						
							|  |  |  |         None, | 
					
						
							|  |  |  |         None, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     assert imagenet_splits.xvalid[:10] == [ | 
					
						
							|  |  |  |         1, | 
					
						
							|  |  |  |         2, | 
					
						
							|  |  |  |         3, | 
					
						
							|  |  |  |         6, | 
					
						
							|  |  |  |         7, | 
					
						
							|  |  |  |         8, | 
					
						
							|  |  |  |         9, | 
					
						
							|  |  |  |         12, | 
					
						
							|  |  |  |         16, | 
					
						
							|  |  |  |         18, | 
					
						
							|  |  |  |     ] and imagenet_splits.xtest[:10] == [ | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         0, | 
					
						
							|  |  |  |         4, | 
					
						
							|  |  |  |         5, | 
					
						
							|  |  |  |         10, | 
					
						
							|  |  |  |         11, | 
					
						
							|  |  |  |         13, | 
					
						
							|  |  |  |         14, | 
					
						
							|  |  |  |         15, | 
					
						
							|  |  |  |         17, | 
					
						
							|  |  |  |         20, | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  |     train_imagenet_loader = torch.utils.data.DataLoader( | 
					
						
							|  |  |  |         TRAIN_ImageNet16_120, | 
					
						
							|  |  |  |         batch_size=imagenet16_config.batch_size, | 
					
						
							|  |  |  |         shuffle=True, | 
					
						
							|  |  |  |         num_workers=workers, | 
					
						
							|  |  |  |         pin_memory=True, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     valid_imagenet_loader = torch.utils.data.DataLoader( | 
					
						
							|  |  |  |         VALID_ImageNet16_120, | 
					
						
							|  |  |  |         batch_size=imagenet16_config.batch_size, | 
					
						
							|  |  |  |         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), | 
					
						
							|  |  |  |         num_workers=workers, | 
					
						
							|  |  |  |         pin_memory=True, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     test__imagenet_loader = torch.utils.data.DataLoader( | 
					
						
							|  |  |  |         VALID_ImageNet16_120, | 
					
						
							|  |  |  |         batch_size=imagenet16_config.batch_size, | 
					
						
							|  |  |  |         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest), | 
					
						
							|  |  |  |         num_workers=workers, | 
					
						
							|  |  |  |         pin_memory=True, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "ImageNet-16-120  : train-loader has {:3d} batch with {:} per batch".format( | 
					
						
							|  |  |  |             len(train_imagenet_loader), imagenet16_config.batch_size | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "ImageNet-16-120  : valid-loader has {:3d} batch with {:} per batch".format( | 
					
						
							|  |  |  |             len(valid_imagenet_loader), imagenet16_config.batch_size | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "ImageNet-16-120  : test--loader has {:3d} batch with {:} per batch".format( | 
					
						
							|  |  |  |             len(test__imagenet_loader), imagenet16_config.batch_size | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # 'cifar10', 'cifar100', 'ImageNet16-120' | 
					
						
							|  |  |  |     loaders = { | 
					
						
							|  |  |  |         "cifar10@trainval": trainval_cifar10_loader, | 
					
						
							|  |  |  |         "cifar10@train": train_cifar10_loader, | 
					
						
							|  |  |  |         "cifar10@valid": valid_cifar10_loader, | 
					
						
							|  |  |  |         "cifar10@test": test__cifar10_loader, | 
					
						
							|  |  |  |         "cifar100@train": train_cifar100_loader, | 
					
						
							|  |  |  |         "cifar100@valid": valid_cifar100_loader, | 
					
						
							|  |  |  |         "cifar100@test": test__cifar100_loader, | 
					
						
							|  |  |  |         "ImageNet16-120@train": train_imagenet_loader, | 
					
						
							|  |  |  |         "ImageNet16-120@valid": valid_imagenet_loader, | 
					
						
							|  |  |  |         "ImageNet16-120@test": test__imagenet_loader, | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     return loaders | 
					
						
							| 
									
										
										
										
											2019-12-20 20:41:49 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def simplify(save_dir, meta_file, basestr, target_dir): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     meta_infos = torch.load(meta_file, map_location="cpu") | 
					
						
							|  |  |  |     meta_archs = meta_infos["archs"]  # a list of architecture strings | 
					
						
							|  |  |  |     meta_num_archs = meta_infos["total"] | 
					
						
							|  |  |  |     meta_max_node = meta_infos["max_node"] | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     assert meta_num_archs == len( | 
					
						
							|  |  |  |         meta_archs | 
					
						
							|  |  |  |     ), "invalid number of archs : {:} vs {:}".format(meta_num_archs, len(meta_archs)) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     print( | 
					
						
							|  |  |  |         "{:} find {:} directories used to save checkpoints".format( | 
					
						
							|  |  |  |             time_string(), len(sub_model_dirs) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | 
					
						
							|  |  |  |     num_seeds = defaultdict(lambda: 0) | 
					
						
							|  |  |  |     for index, sub_dir in enumerate(sub_model_dirs): | 
					
						
							|  |  |  |         xcheckpoints = list(sub_dir.glob("arch-*-seed-*.pth")) | 
					
						
							|  |  |  |         arch_indexes = set() | 
					
						
							|  |  |  |         for checkpoint in xcheckpoints: | 
					
						
							|  |  |  |             temp_names = checkpoint.name.split("-") | 
					
						
							|  |  |  |             assert ( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 len(temp_names) == 4 | 
					
						
							|  |  |  |                 and temp_names[0] == "arch" | 
					
						
							|  |  |  |                 and temp_names[2] == "seed" | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ), "invalid checkpoint name : {:}".format(checkpoint.name) | 
					
						
							|  |  |  |             arch_indexes.add(temp_names[1]) | 
					
						
							|  |  |  |         subdir2archs[sub_dir] = sorted(list(arch_indexes)) | 
					
						
							|  |  |  |         num_evaluated_arch += len(arch_indexes) | 
					
						
							|  |  |  |         # count number of seeds for each architecture | 
					
						
							|  |  |  |         for arch_index in arch_indexes: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             num_seeds[ | 
					
						
							|  |  |  |                 len(list(sub_dir.glob("arch-{:}-seed-*.pth".format(arch_index)))) | 
					
						
							|  |  |  |             ] += 1 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     print( | 
					
						
							|  |  |  |         "{:} There are {:5d} architectures that have been evaluated ({:} in total).".format( | 
					
						
							|  |  |  |             time_string(), num_evaluated_arch, meta_num_archs | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     for key in sorted(list(num_seeds.keys())): | 
					
						
							|  |  |  |         print( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             "{:} There are {:5d} architectures that are evaluated {:} times.".format( | 
					
						
							|  |  |  |                 time_string(), num_seeds[key], key | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     dataloader_dict = GET_DataLoaders(6) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     to_save_simply = save_dir / "simplifies" | 
					
						
							|  |  |  |     to_save_allarc = save_dir / "simplifies" / "architectures" | 
					
						
							|  |  |  |     if not to_save_simply.exists(): | 
					
						
							|  |  |  |         to_save_simply.mkdir(parents=True, exist_ok=True) | 
					
						
							|  |  |  |     if not to_save_allarc.exists(): | 
					
						
							|  |  |  |         to_save_allarc.mkdir(parents=True, exist_ok=True) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     assert (save_dir / target_dir) in subdir2archs, "can not find {:}".format( | 
					
						
							|  |  |  |         target_dir | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     arch2infos, datasets = {}, ( | 
					
						
							|  |  |  |         "cifar10-valid", | 
					
						
							|  |  |  |         "cifar10", | 
					
						
							|  |  |  |         "cifar100", | 
					
						
							|  |  |  |         "ImageNet16-120", | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     evaluated_indexes = set() | 
					
						
							|  |  |  |     target_directory = save_dir / target_dir | 
					
						
							|  |  |  |     target_less_dir = save_dir / "{:}-LESS".format(target_dir) | 
					
						
							|  |  |  |     arch_indexes = subdir2archs[target_directory] | 
					
						
							|  |  |  |     num_seeds = defaultdict(lambda: 0) | 
					
						
							|  |  |  |     end_time = time.time() | 
					
						
							|  |  |  |     arch_time = AverageMeter() | 
					
						
							|  |  |  |     for idx, arch_index in enumerate(arch_indexes): | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         checkpoints = list( | 
					
						
							|  |  |  |             target_directory.glob("arch-{:}-seed-*.pth".format(arch_index)) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ckps_less = list(target_less_dir.glob("arch-{:}-seed-*.pth".format(arch_index))) | 
					
						
							|  |  |  |         # create the arch info for each architecture | 
					
						
							|  |  |  |         try: | 
					
						
							|  |  |  |             arch_info_full = account_one_arch( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 arch_index, | 
					
						
							|  |  |  |                 meta_archs[int(arch_index)], | 
					
						
							|  |  |  |                 checkpoints, | 
					
						
							|  |  |  |                 datasets, | 
					
						
							|  |  |  |                 dataloader_dict, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |             arch_info_less = account_one_arch( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 arch_index, | 
					
						
							|  |  |  |                 meta_archs[int(arch_index)], | 
					
						
							|  |  |  |                 ckps_less, | 
					
						
							|  |  |  |                 ["cifar10-valid"], | 
					
						
							|  |  |  |                 dataloader_dict, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |             num_seeds[len(checkpoints)] += 1 | 
					
						
							|  |  |  |         except: | 
					
						
							|  |  |  |             print("Loading {:} failed, : {:}".format(arch_index, checkpoints)) | 
					
						
							|  |  |  |             continue | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         assert ( | 
					
						
							|  |  |  |             int(arch_index) not in evaluated_indexes | 
					
						
							|  |  |  |         ), "conflict arch-index : {:}".format(arch_index) | 
					
						
							|  |  |  |         assert ( | 
					
						
							|  |  |  |             0 <= int(arch_index) < len(meta_archs) | 
					
						
							|  |  |  |         ), "invalid arch-index {:} (not found in meta_archs)".format(arch_index) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         arch_info = {"full": arch_info_full, "less": arch_info_less} | 
					
						
							|  |  |  |         evaluated_indexes.add(int(arch_index)) | 
					
						
							|  |  |  |         arch2infos[int(arch_index)] = arch_info | 
					
						
							|  |  |  |         torch.save( | 
					
						
							|  |  |  |             {"full": arch_info_full.state_dict(), "less": arch_info_less.state_dict()}, | 
					
						
							|  |  |  |             to_save_allarc / "{:}-FULL.pth".format(arch_index), | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         arch_info["full"].clear_params() | 
					
						
							|  |  |  |         arch_info["less"].clear_params() | 
					
						
							|  |  |  |         torch.save( | 
					
						
							|  |  |  |             {"full": arch_info_full.state_dict(), "less": arch_info_less.state_dict()}, | 
					
						
							|  |  |  |             to_save_allarc / "{:}-SIMPLE.pth".format(arch_index), | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         # measure elapsed time | 
					
						
							|  |  |  |         arch_time.update(time.time() - end_time) | 
					
						
							|  |  |  |         end_time = time.time() | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         need_time = "{:}".format( | 
					
						
							|  |  |  |             convert_secs2time(arch_time.avg * (len(arch_indexes) - idx - 1), True) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         print( | 
					
						
							|  |  |  |             "{:} {:} [{:03d}/{:03d}] : {:} still need {:}".format( | 
					
						
							|  |  |  |                 time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     # measure time | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     xstrs = [ | 
					
						
							|  |  |  |         "{:}:{:03d}".format(key, num_seeds[key]) | 
					
						
							|  |  |  |         for key in sorted(list(num_seeds.keys())) | 
					
						
							|  |  |  |     ] | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     print("{:} {:} done : {:}".format(time_string(), target_dir, xstrs)) | 
					
						
							|  |  |  |     final_infos = { | 
					
						
							|  |  |  |         "meta_archs": meta_archs, | 
					
						
							|  |  |  |         "total_archs": meta_num_archs, | 
					
						
							|  |  |  |         "basestr": basestr, | 
					
						
							|  |  |  |         "arch2infos": arch2infos, | 
					
						
							|  |  |  |         "evaluated_indexes": evaluated_indexes, | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     save_file_name = to_save_simply / "{:}.pth".format(target_dir) | 
					
						
							|  |  |  |     torch.save(final_infos, save_file_name) | 
					
						
							|  |  |  |     print( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "Save {:} / {:} architecture results into {:}.".format( | 
					
						
							|  |  |  |             len(evaluated_indexes), meta_num_archs, save_file_name | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							| 
									
										
										
										
											2019-12-20 20:41:49 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def merge_all(save_dir, meta_file, basestr): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     meta_infos = torch.load(meta_file, map_location="cpu") | 
					
						
							|  |  |  |     meta_archs = meta_infos["archs"] | 
					
						
							|  |  |  |     meta_num_archs = meta_infos["total"] | 
					
						
							|  |  |  |     meta_max_node = meta_infos["max_node"] | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     assert meta_num_archs == len( | 
					
						
							|  |  |  |         meta_archs | 
					
						
							|  |  |  |     ), "invalid number of archs : {:} vs {:}".format(meta_num_archs, len(meta_archs)) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr)))) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     print( | 
					
						
							|  |  |  |         "{:} find {:} directories used to save checkpoints".format( | 
					
						
							|  |  |  |             time_string(), len(sub_model_dirs) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     for index, sub_dir in enumerate(sub_model_dirs): | 
					
						
							|  |  |  |         arch_info_files = sorted(list(sub_dir.glob("arch-*-seed-*.pth"))) | 
					
						
							|  |  |  |         print( | 
					
						
							|  |  |  |             "The {:02d}/{:02d}-th directory : {:} : {:} runs.".format( | 
					
						
							|  |  |  |                 index, len(sub_model_dirs), sub_dir, len(arch_info_files) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     arch2infos, evaluated_indexes = dict(), set() | 
					
						
							|  |  |  |     for IDX, sub_dir in enumerate(sub_model_dirs): | 
					
						
							|  |  |  |         ckp_path = sub_dir.parent / "simplifies" / "{:}.pth".format(sub_dir.name) | 
					
						
							|  |  |  |         if ckp_path.exists(): | 
					
						
							|  |  |  |             sub_ckps = torch.load(ckp_path, map_location="cpu") | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             assert ( | 
					
						
							|  |  |  |                 sub_ckps["total_archs"] == meta_num_archs | 
					
						
							|  |  |  |                 and sub_ckps["basestr"] == basestr | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             xarch2infos = sub_ckps["arch2infos"] | 
					
						
							|  |  |  |             xevalindexs = sub_ckps["evaluated_indexes"] | 
					
						
							|  |  |  |             for eval_index in xevalindexs: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 assert ( | 
					
						
							|  |  |  |                     eval_index not in evaluated_indexes and eval_index not in arch2infos | 
					
						
							|  |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 # arch2infos[eval_index] = xarch2infos[eval_index].state_dict() | 
					
						
							|  |  |  |                 arch2infos[eval_index] = { | 
					
						
							|  |  |  |                     "full": xarch2infos[eval_index]["full"].state_dict(), | 
					
						
							|  |  |  |                     "less": xarch2infos[eval_index]["less"].state_dict(), | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 evaluated_indexes.add(eval_index) | 
					
						
							|  |  |  |             print( | 
					
						
							|  |  |  |                 "{:} [{:03d}/{:03d}] merge data from {:} with {:} models.".format( | 
					
						
							|  |  |  |                     time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs) | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("Can not find {:}".format(ckp_path)) | 
					
						
							|  |  |  |             # print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     evaluated_indexes = sorted(list(evaluated_indexes)) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     print( | 
					
						
							|  |  |  |         "Finally, there are {:} architectures that have been trained and evaluated.".format( | 
					
						
							|  |  |  |             len(evaluated_indexes) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     to_save_simply = save_dir / "simplifies" | 
					
						
							|  |  |  |     if not to_save_simply.exists(): | 
					
						
							|  |  |  |         to_save_simply.mkdir(parents=True, exist_ok=True) | 
					
						
							|  |  |  |     final_infos = { | 
					
						
							|  |  |  |         "meta_archs": meta_archs, | 
					
						
							|  |  |  |         "total_archs": meta_num_archs, | 
					
						
							|  |  |  |         "arch2infos": arch2infos, | 
					
						
							|  |  |  |         "evaluated_indexes": evaluated_indexes, | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     save_file_name = to_save_simply / "{:}-final-infos.pth".format(basestr) | 
					
						
							|  |  |  |     torch.save(final_infos, save_file_name) | 
					
						
							|  |  |  |     print( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "Save {:} / {:} architecture results into {:}.".format( | 
					
						
							|  |  |  |             len(evaluated_indexes), meta_num_archs, save_file_name | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         description="NAS-BENCH-201", | 
					
						
							|  |  |  |         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--mode", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         choices=["cal", "merge"], | 
					
						
							|  |  |  |         help="The running mode for this script.", | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--base_save_dir", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default="./output/NAS-BENCH-201-4", | 
					
						
							|  |  |  |         help="The base-name of folder to save checkpoints and log.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument("--target_dir", type=str, help="The target directory.") | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--max_node", type=int, default=4, help="The maximum node in a cell." | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--channel", type=int, default=16, help="The number of channels." | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--num_cells", type=int, default=5, help="The number of cells in one stage." | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     args = parser.parse_args() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     save_dir = Path(args.base_save_dir) | 
					
						
							|  |  |  |     meta_path = save_dir / "meta-node-{:}.pth".format(args.max_node) | 
					
						
							|  |  |  |     assert save_dir.exists(), "invalid save dir path : {:}".format(save_dir) | 
					
						
							|  |  |  |     assert meta_path.exists(), "invalid saved meta path : {:}".format(meta_path) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     print( | 
					
						
							|  |  |  |         "start the statistics of our nas-benchmark from {:} using {:}.".format( | 
					
						
							|  |  |  |             save_dir, args.target_dir | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     basestr = "C{:}-N{:}".format(args.channel, args.num_cells) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if args.mode == "cal": | 
					
						
							|  |  |  |         simplify(save_dir, meta_path, basestr, args.target_dir) | 
					
						
							|  |  |  |     elif args.mode == "merge": | 
					
						
							|  |  |  |         merge_all(save_dir, meta_path, basestr) | 
					
						
							| 
									
										
										
										
											2019-12-20 20:41:49 +11:00
										 |  |  |     else: | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         raise ValueError("invalid mode : {:}".format(args.mode)) |