xautodl/tests/test_super_model.py

77 lines
2.8 KiB
Python
Raw Normal View History

2021-03-18 13:15:50 +01:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
# pytest ./tests/test_super_model.py -s #
#####################################################
import sys, random
import unittest
import pytest
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / "lib").resolve()
print("library path: {:}".format(lib_dir))
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
import torch
from xlayers import super_core
import spaces
class TestSuperLinear(unittest.TestCase):
"""Test the super linear."""
def test_super_linear(self):
out_features = spaces.Categorical(12, 24, 36)
bias = spaces.Categorical(True, False)
model = super_core.SuperLinear(10, out_features, bias=bias)
2021-03-19 08:17:49 +01:00
print("The simple super linear module is:\n{:}".format(model))
2021-03-18 13:44:22 +01:00
print(model.super_run_type)
2021-03-19 08:17:49 +01:00
self.assertTrue(model.bias)
inputs = torch.rand(32, 10)
print("Input shape: {:}".format(inputs.shape))
print("Weight shape: {:}".format(model._super_weight.shape))
print("Bias shape: {:}".format(model._super_bias.shape))
outputs = model(inputs)
self.assertEqual(tuple(outputs.shape), (32, 36))
abstract_space = model.abstract_search_space
abstract_child = abstract_space.random()
print("The abstract searc space:\n{:}".format(abstract_space))
print("The abstract child program:\n{:}".format(abstract_child))
model.set_super_run_type(super_core.SuperRunMode.Candidate)
model.apply_candiate(abstract_child)
output_shape = (32, abstract_child["_out_features"].value)
outputs = model(inputs)
self.assertEqual(tuple(outputs.shape), output_shape)
2021-03-19 11:22:58 +01:00
def test_super_mlp(self):
hidden_features = spaces.Categorical(12, 24, 36)
out_features = spaces.Categorical(12, 24, 36)
mlp = super_core.SuperMLP(10, hidden_features, out_features)
print(mlp)
self.assertTrue(mlp.fc1._out_features, mlp.fc2._in_features)
abstract_space = mlp.abstract_search_space
print("The abstract search space for SuperMLP is:\n{:}".format(abstract_space))
self.assertEqual(
abstract_space["fc1"]["_out_features"],
abstract_space["fc2"]["_in_features"],
)
self.assertTrue(
abstract_space["fc1"]["_out_features"]
is abstract_space["fc2"]["_in_features"]
)
abstract_space.clean_last_sample()
abstract_child = abstract_space.random(reuse_last=True)
print("The abstract child program is:\n{:}".format(abstract_child))
self.assertEqual(
abstract_child["fc1"]["_out_features"].value,
abstract_child["fc2"]["_in_features"].value,
)