2021-03-17 13:48:43 +01:00
|
|
|
#####################################################
|
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.01 #
|
|
|
|
#####################################################
|
|
|
|
|
|
|
|
import abc
|
2021-03-18 07:05:29 +01:00
|
|
|
import math
|
2021-03-18 08:04:14 +01:00
|
|
|
import copy
|
2021-03-17 13:48:43 +01:00
|
|
|
import random
|
2021-03-18 08:04:14 +01:00
|
|
|
import numpy as np
|
2021-03-17 13:48:43 +01:00
|
|
|
|
2021-03-18 07:05:29 +01:00
|
|
|
from typing import Optional
|
|
|
|
|
2021-03-18 08:04:14 +01:00
|
|
|
_EPS = 1e-9
|
|
|
|
|
2021-03-17 13:48:43 +01:00
|
|
|
|
|
|
|
class Space(metaclass=abc.ABCMeta):
|
2021-03-18 08:04:14 +01:00
|
|
|
"""Basic search space describing the set of possible candidate values for hyperparameter.
|
|
|
|
All search space must inherit from this basic class.
|
|
|
|
"""
|
|
|
|
|
2021-03-17 13:48:43 +01:00
|
|
|
@abc.abstractmethod
|
2021-03-18 07:05:29 +01:00
|
|
|
def random(self, recursion=True):
|
2021-03-17 13:48:43 +01:00
|
|
|
raise NotImplementedError
|
|
|
|
|
2021-03-18 08:04:14 +01:00
|
|
|
@abc.abstractproperty
|
|
|
|
def determined(self):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
2021-03-17 13:48:43 +01:00
|
|
|
@abc.abstractmethod
|
|
|
|
def __repr__(self):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
2021-03-18 08:04:14 +01:00
|
|
|
@abc.abstractmethod
|
|
|
|
def has(self, x):
|
|
|
|
"""Check whether x is in this search space."""
|
|
|
|
assert not isinstance(
|
|
|
|
x, Space
|
|
|
|
), "The input value itself can not be a search space."
|
|
|
|
|
|
|
|
def copy(self):
|
|
|
|
return copy.deepcopy(self)
|
|
|
|
|
2021-03-17 13:48:43 +01:00
|
|
|
|
|
|
|
class Categorical(Space):
|
2021-03-18 08:04:14 +01:00
|
|
|
"""A space contains the categorical values.
|
|
|
|
It can be a nested space, which means that the candidate in this space can also be a search space.
|
|
|
|
"""
|
|
|
|
|
2021-03-18 07:05:29 +01:00
|
|
|
def __init__(self, *data, default: Optional[int] = None):
|
2021-03-17 13:48:43 +01:00
|
|
|
self._candidates = [*data]
|
2021-03-18 07:05:29 +01:00
|
|
|
self._default = default
|
2021-03-18 08:04:14 +01:00
|
|
|
assert self._default is None or 0 <= self._default < len(
|
|
|
|
self._candidates
|
|
|
|
), "default >= {:}".format(len(self._candidates))
|
|
|
|
assert len(self) > 0, "Please provide at least one candidate"
|
|
|
|
|
|
|
|
@property
|
|
|
|
def determined(self):
|
|
|
|
if len(self) == 1:
|
|
|
|
return (
|
|
|
|
not isinstance(self._candidates[0], Space)
|
|
|
|
or self._candidates[0].determined
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
return False
|
2021-03-17 13:48:43 +01:00
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
return self._candidates[index]
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self._candidates)
|
|
|
|
|
|
|
|
def __repr__(self):
|
2021-03-18 07:05:29 +01:00
|
|
|
return "{name:}(candidates={cs:}, default_index={default:})".format(
|
|
|
|
name=self.__class__.__name__, cs=self._candidates, default=self._default
|
|
|
|
)
|
|
|
|
|
2021-03-18 08:04:14 +01:00
|
|
|
def has(self, x):
|
|
|
|
super().has(x)
|
|
|
|
for candidate in self._candidates:
|
|
|
|
if isinstance(candidate, Space) and candidate.has(x):
|
|
|
|
return True
|
|
|
|
elif candidate == x:
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
2021-03-18 07:05:29 +01:00
|
|
|
def random(self, recursion=True):
|
|
|
|
sample = random.choice(self._candidates)
|
|
|
|
if recursion and isinstance(sample, Space):
|
|
|
|
return sample.random(recursion)
|
|
|
|
else:
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
2021-03-18 08:04:14 +01:00
|
|
|
np_float_types = (np.float16, np.float32, np.float64)
|
|
|
|
np_int_types = (
|
|
|
|
np.uint8,
|
|
|
|
np.int8,
|
|
|
|
np.uint16,
|
|
|
|
np.int16,
|
|
|
|
np.uint32,
|
|
|
|
np.int32,
|
|
|
|
np.uint64,
|
|
|
|
np.int64,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2021-03-18 07:05:29 +01:00
|
|
|
class Continuous(Space):
|
2021-03-18 08:04:14 +01:00
|
|
|
"""A space contains the continuous values."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
lower: float,
|
|
|
|
upper: float,
|
|
|
|
default: Optional[float] = None,
|
|
|
|
log: bool = False,
|
|
|
|
eps: float = _EPS,
|
|
|
|
):
|
2021-03-18 07:05:29 +01:00
|
|
|
self._lower = lower
|
|
|
|
self._upper = upper
|
|
|
|
self._default = default
|
|
|
|
self._log_scale = log
|
2021-03-18 08:04:14 +01:00
|
|
|
self._eps = eps
|
2021-03-18 07:05:29 +01:00
|
|
|
|
|
|
|
@property
|
|
|
|
def lower(self):
|
|
|
|
return self._lower
|
|
|
|
|
|
|
|
@property
|
|
|
|
def upper(self):
|
|
|
|
return self._upper
|
|
|
|
|
|
|
|
@property
|
|
|
|
def default(self):
|
|
|
|
return self._default
|
|
|
|
|
2021-03-18 08:04:14 +01:00
|
|
|
@property
|
|
|
|
def determined(self):
|
|
|
|
return abs(self.lower - self.upper) <= self._eps
|
|
|
|
|
2021-03-18 07:05:29 +01:00
|
|
|
def __repr__(self):
|
|
|
|
return "{name:}(lower={lower:}, upper={upper:}, default_value={default:}, log_scale={log:})".format(
|
|
|
|
name=self.__class__.__name__,
|
|
|
|
lower=self._lower,
|
|
|
|
upper=self._upper,
|
|
|
|
default=self._default,
|
|
|
|
log=self._log_scale,
|
|
|
|
)
|
2021-03-17 13:48:43 +01:00
|
|
|
|
2021-03-18 08:04:14 +01:00
|
|
|
def convert(self, x):
|
|
|
|
if isinstance(x, np_float_types) and x.size == 1:
|
|
|
|
return float(x), True
|
|
|
|
elif isinstance(x, np_int_types) and x.size == 1:
|
|
|
|
return float(x), True
|
|
|
|
elif isinstance(x, int):
|
|
|
|
return float(x), True
|
|
|
|
elif isinstance(x, float):
|
|
|
|
return float(x), True
|
|
|
|
else:
|
|
|
|
return None, False
|
|
|
|
|
|
|
|
def has(self, x):
|
|
|
|
super().has(x)
|
|
|
|
converted_x, success = self.convert(x)
|
|
|
|
return success and self.lower <= converted_x <= self.upper
|
|
|
|
|
2021-03-18 07:05:29 +01:00
|
|
|
def random(self, recursion=True):
|
|
|
|
del recursion
|
|
|
|
if self._log_scale:
|
|
|
|
sample = random.uniform(math.log(self._lower), math.log(self._upper))
|
|
|
|
return math.exp(sample)
|
|
|
|
else:
|
|
|
|
return random.uniform(self._lower, self._upper)
|