xautodl/notebooks/spaces-xmisc/synthetic-env.ipynb

130 lines
380 KiB
Plaintext
Raw Normal View History

2021-04-26 15:44:03 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "filled-multiple",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The root path: /Users/xuanyidong/Desktop/AutoDL-Projects\n",
"The library path: /Users/xuanyidong/Desktop/AutoDL-Projects/lib\n"
]
}
],
"source": [
"import os, sys\n",
"import torch\n",
"from pathlib import Path\n",
"import numpy as np\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"\n",
"\n",
"__file__ = os.path.dirname(os.path.realpath(\"__file__\"))\n",
"root_dir = (Path(__file__).parent / \"..\").resolve()\n",
"lib_dir = (root_dir / \"lib\").resolve()\n",
"print(\"The root path: {:}\".format(root_dir))\n",
"print(\"The library path: {:}\".format(lib_dir))\n",
"assert lib_dir.exists(), \"{:} does not exist\".format(lib_dir)\n",
"if str(lib_dir) not in sys.path:\n",
" sys.path.insert(0, str(lib_dir))\n",
"\n",
"from datasets.synthetic_example import create_example_v1"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "consistent-transition",
"metadata": {},
"outputs": [
{
"data": {
2021-04-28 17:56:25 +02:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAEd8AAAjqCAYAAAB+2cVeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9YYybd54n+P3+rCJVVJWt0rpley7VambmrElvhGveQbPpF3e5y+yuBtjFZRIiPXuHXiRyNjj2ImMEY+3oTS5MjsAGE/fYmKCDi2ovF+sGM0F2BnlyO8Bc0sIBu8jlgt5tNVCNeNBYe2fAlrmx2rLbJbtKVSKL/OdFW2WVq+QW7ZIesurzAYgmv5Tc36mWNSQfPt8n5ZwDAAAAAAAAAAAAAAAAAAAAAACOk0rZBQAAAAAAAAAAAAAAAAAAAAAA4EkzvgMAAAAAAAAAAAAAAAAAAAAAwLFjfAcAAAAAAAAAAAAAAAAAAAAAgGPH+A4AAAAAAAAAAAAAAAAAAAAAAMeO8R0AAAAAAAAAAAAAAAAAAAAAAI6d+bIL8Nm+9KUv5UajUXYNAAAAAAAAAAAAAAAAAAAAAICZ84Mf/OC9nPOZg54zvjPlGo1G3Lhxo+waAAAAAAAAAAAAAAAAAAAAAAAzJ6X044c9V3mSRQAAAAAAAAAAAAAAAAAAAAAAYBoY3wEAAAAAAAAAAAAAAAAAAAAA4NgxvgMAAAAAAAAAAAAAAAAAAAAAwLFjfAcAAAAAAAAAAAAAAAAAAAAAgGPH+A4AAAAAAAAAAAAAAAAAAAAAAMeO8R0AAAAAAAAAAAAAAAAAAAAAAI4d4zsAAAAAAAAAAAAAAAAAAAAAABw7xncAAAAAAAAAAAAAAAAAAAAAADh2jO8AAAAAAAAAAAAAAAAAAAAAAHDsGN8BAAAAAAAAAAAAAAAAAAAAAODYMb4DAAAAAAAAAAAAAAAAAAAAAMCxY3wHAAAAAAAAAAAAAAAAAAAAAIBjx/gOAAAAAAAAAAAAAAAAAAAAAADHjvEdAAAAAAAAAAAAAAAAAAAAAACOHeM7AAAAAAAAAAAAAAAAAAAAAAAcO8Z3AAAAAAAAAAAAAAAAAAAAAAA4dozvAAAAAAAAAAAAAAAAAAAAAABw7MyXXeCoSSktRsSvR0QrIv7bEfGvxM9+zu9ExP8vIr4XEf84Iv6rnPNGWT0BAAAAAAAAAAAAAAAAAAAAAI4z4zuHKKX0P4qI/338bHDn037p49u/FRG//fHtd59cOwAAAAAAAAAAAAAAAAAAAAAA7jO+c0hSSt+OiL/3qfjdiOhFxEZEPBMR/62IOPFkmwEAAAAAAAAAAAAAAAAAAAAA8GnGdw5BSuk/ir3DO9+NiE5EfD/nnB/4dfMR8W9GxL8XPxvkAQAAAAAAAAAAAAAAAAAAAACgBMZ3vqCU0tcj4j98IPrf5pz/lwf92pzzTkT8k49vAAAAAAAAAAAAAAAAAAAAAACUpFJ2gVmWUkoR8Z/EJz/HP33Y8A4AAAAAAAAAAAAAAAAAAAAAANPD+M4X81cj4vzH93NE/FaJXQAAAAAAAAAAAAAAAAAAAAAAeETGd76Y/9kD9/9Jzvmt0poAAAAAAAAAAAAAAAAAAAAAAPDIjO98MX/tgfv/RWktAAAAAAAAAAAAAAAAAAAAAACYiPGdzyml9K9GxDMPRN/7OP83Ukr/x5TSP08pbaaU7nx8/z9NKf31ctoCAAAAAAAAAAAAAAAAAAAAAPCg+bILzLB/7VOP/yKl9EpEXI79o0ZPR8S5iPifppT+cUT8+znnnzyBjgAAAAAAAAAAAAAAAAAAAAAAHODTIzE8umceuL8TEf9hRPx2fPIzfTMi/nFE/DAixg/82v9eRPzTlNJzD/sHp5T+g5TSjZTSjdu3bx9uawAAAAAAAAAAAAAAAAAAAAAAjO98AaceuD8fEX/34/v/n4g4n3P+5Zzzr+acmxGxEhH/8IFf/5WI+MOH/YNzzv8g53wh53zhzJkzh1wbAAAAAAAAAAAAAAAAAAAAAADjO5/fwgHZDyLir+Wc/+zBMOf8TkT8+xHxf3kg/qsppb/2GPsBAAAAAAAAAAAAAAAAAAAAAPAQxnc+v80Dsv95znnroF+cc84R8VJE3H0g/juPoxgAAAAAAAAAAAAAAAAAAAAAAJ/N+M7nt/Gpx2/lnP/pZ/2GnPNPI+K/eCD67x56KwAAAAAAAAAAAAAAAAAAAAAAfi7jO5/fe596/INH/H0P/rp/JaW0cEh9AAAAAAAAAAAAAAAAAAAAAAB4RMZ3Pr8fferx+4/4+z79604fQhcAAAAAAAAAAAAAAAAAAAAAACZgfOfz+xcRMXjg8YlH/H0Ln3q8dTh1AAAAAAAAAAAAAAAAAAAAAAB4VMZ3Pqec805E/L8fiH7xEX/rf/OB+/ci4s6hlQIAAAAAAAAAAAAAAAAAAAAA4JEY3/li/m8P3P96SumpR/g9f/2B+/8055wPuRMAAAAAAAAAAAAAAAAAAAAAAD+H8Z0v5o8i4qOP75+MiP/FZ/3ilNK/GxHnH4j+88dTCwAAAAAAAAAAAAAAAAAAAACAz2J85wvIOb8XEd9+IPpfpZR+/aBfm1L6WkT8pw9EtyPiHzzGegAAAAAAAAAAAAAAAAAAAAAAPITxnS/u2xHxvY/v1yLi/55S+qOU0r+XUvq3Ukq/nlL6jyPin0XEmY9/3Tgi/sc5580S+gIAAAAAAAAAAAAwhYqiiGazGcvLy9FsNqMoirIrAQAAAAAAwJE2X3aBWZdz3k4p/bsRcT0i/vWISBHxjY9vB7kXEX8n5/z/fEIVAQAAAAAAAAAAAJhyRVFEu92OnHPU6/Xo9/vRbrcjIqLVapXcDgAAAAAAAI6mStkFjoKc83sR8d+JiP9NRNx+yC8bR8SfRMSFnPMfPqFqAAAAAAAAAAAAAMyAbrcbOeeo1WqRUoparRY55+h2u2VXAwAAAAAAgCNrvuwCR0XOeRgR/1FK6e9HxL8ZEf9qRJyJiM2IeDsi/l855/dLrAgAAAAAAAAAAADAlOr1elGv1/dk1Wo1er1eOYUAAAAAAADgGDC+c8hyzjsR8U8+vgEAAAAAAAAAAADAz9VoNKLf70etVtvNhsNhNBqN8koBAAAAAADAEVcpuwAAAAAAAAAAAAAAHHedTidSSjEYDCLnHIPBIFJK0el0yq4GAAAAAAAAR5bxHQAAAAAAAAAAAAAoWavVitXV1VhZWYmtra1YWVmJ1dXVaLVaZVcDAAAAAACAIyvlnMvuwGe4cOFCvnHjRtk1AAAAAAAAAAAAAAAAAAAAAABmTkrpBznnCwc9V3nSZQAAAAAAAAAAAAAAAAAAAAAAoGzGdwAAAAAAAAAAAAAAAAAAAAAAOHaM7wAAAAAAAAAAAAAAAAAAAAAAcOwY3wEAAAAAAAAAAAAAAAAAAAAA4NgxvgMAAAAAAAAAAAAAAAAAAAAAwLFjfAcAAAAAAAAAAAAAAAAAAAAAgGPH+A4AAAAAAAAAAAAAAAAAAAAAAMeO8R0AAAAAAAAAAAAAAAAAAAAAAI4d4zsAAAAAAAAAAAAAMAWKoohmsxnLy8vRbDajKIqyKwEAAAAAAMCRNl92AQAAAAAAAAAAAAA47oqiiHa7HTnnqNfr0e/3o91uR0REq9UquR0AAAAAAAAcTZWyCwAAAAAAAAAAAADAcdftdiPnHLVaLVJKUavVIucc3W637GoAAAAAAABwZBnfAQAAAAAAAAAAAICS9Xq9qFare7JqtRq9Xq+cQgAAAAAAAHAMGN8BAAAAAAAAAAAAgJI1Go0YDod7suFwGI1Go5xCAAAAAAAAcAwY3wEAAAAAAAAAAACAknU6nUgpxWAwiJxzDAaDSClFp9MpuxoAAAAAAAAcWcZ3AAAAAAAAAAAAADjyiqKIZrMZy8vL0Ww2oyiKsivt0Wq14sUXX4zNzc24detWbG5uxosvvhitVqvsagAAAAAAAHBkGd8BAAAAAAAAAAAA4EgriiLa7Xb0+/2o1+vR7/ej3W5P1QBPURTx+uuvx+LiYjz//POxuLgYr7/++lR1BAAAAAAAgKMm5Zz
2021-04-26 15:44:03 +02:00
"text/plain": [
"<Figure size 5760x2880 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"def visualize_env():\n",
" \n",
" dpi, width, height = 10, 800, 400\n",
" figsize = width / float(dpi), height / float(dpi)\n",
" LabelSize, LegendFontsize, font_gap = 40, 40, 5\n",
"\n",
" fig = plt.figure(figsize=figsize)\n",
"\n",
2021-04-28 17:56:25 +02:00
" dynamic_env, _ = create_example_v1(num_per_task=250)\n",
2021-04-26 15:44:03 +02:00
" \n",
" timeaxis, xaxis, yaxis = [], [], []\n",
" for timestamp, dataset in dynamic_env:\n",
2021-04-28 17:56:25 +02:00
" num = dataset[0].shape[0]\n",
2021-04-26 15:44:03 +02:00
" timeaxis.append(torch.zeros(num) + timestamp)\n",
2021-04-28 17:56:25 +02:00
" xaxis.append(dataset[0][:,0])\n",
2021-04-26 15:44:03 +02:00
" # compute the ground truth\n",
2021-04-28 17:56:25 +02:00
" # function.set_timestamp(timestamp)\n",
" yaxis.append(dataset[1][:,0])\n",
2021-04-26 15:44:03 +02:00
" \n",
" timeaxis = torch.cat(timeaxis).numpy()\n",
" # import pdb; pdb.set_trace()\n",
" xaxis = torch.cat(xaxis).numpy()\n",
" yaxis = torch.cat(yaxis).numpy()\n",
"\n",
" cur_ax = fig.add_subplot(2, 1, 1)\n",
" cur_ax.scatter(timeaxis, xaxis, color=\"k\", linestyle=\"-\", alpha=0.9, label=None)\n",
" cur_ax.set_xlabel(\"Time\", fontsize=LabelSize)\n",
" cur_ax.set_ylabel(\"X\", rotation=0, fontsize=LabelSize)\n",
" for tick in cur_ax.xaxis.get_major_ticks():\n",
" tick.label.set_fontsize(LabelSize - font_gap)\n",
" tick.label.set_rotation(10)\n",
" for tick in cur_ax.yaxis.get_major_ticks():\n",
" tick.label.set_fontsize(LabelSize - font_gap)\n",
" \n",
" cur_ax = fig.add_subplot(2, 1, 2)\n",
" cur_ax.scatter(timeaxis, yaxis, color=\"k\", linestyle=\"-\", alpha=0.9, label=None)\n",
" cur_ax.set_xlabel(\"Time\", fontsize=LabelSize)\n",
" cur_ax.set_ylabel(\"Y\", rotation=0, fontsize=LabelSize)\n",
" for tick in cur_ax.xaxis.get_major_ticks():\n",
" tick.label.set_fontsize(LabelSize - font_gap)\n",
" tick.label.set_rotation(10)\n",
" for tick in cur_ax.yaxis.get_major_ticks():\n",
" tick.label.set_fontsize(LabelSize - font_gap)\n",
" plt.show()\n",
"\n",
"visualize_env()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}