| 
									
										
										
										
											2020-03-06 19:29:07 +11:00
										 |  |  | ##################################################### | 
					
						
							|  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | 
					
						
							|  |  |  | ##################################################### | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from copy import deepcopy | 
					
						
							|  |  |  | from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # The macro structure is based on NASNet | 
					
						
							|  |  |  | class NASNetonCIFAR(nn.Module): | 
					
						
							| 
									
										
										
										
											2021-05-12 16:28:05 +08:00
										 |  |  |     def __init__( | 
					
						
							|  |  |  |         self, | 
					
						
							|  |  |  |         C, | 
					
						
							|  |  |  |         N, | 
					
						
							|  |  |  |         stem_multiplier, | 
					
						
							|  |  |  |         num_classes, | 
					
						
							|  |  |  |         genotype, | 
					
						
							|  |  |  |         auxiliary, | 
					
						
							|  |  |  |         affine=True, | 
					
						
							|  |  |  |         track_running_stats=True, | 
					
						
							|  |  |  |     ): | 
					
						
							|  |  |  |         super(NASNetonCIFAR, self).__init__() | 
					
						
							|  |  |  |         self._C = C | 
					
						
							|  |  |  |         self._layerN = N | 
					
						
							|  |  |  |         self.stem = nn.Sequential( | 
					
						
							|  |  |  |             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | 
					
						
							|  |  |  |             nn.BatchNorm2d(C * stem_multiplier), | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2020-03-06 19:29:07 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-12 16:28:05 +08:00
										 |  |  |         # config for each layer | 
					
						
							|  |  |  |         layer_channels = ( | 
					
						
							|  |  |  |             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         layer_reductions = ( | 
					
						
							|  |  |  |             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2020-03-06 19:29:07 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-12 16:28:05 +08:00
										 |  |  |         C_prev_prev, C_prev, C_curr, reduction_prev = ( | 
					
						
							|  |  |  |             C * stem_multiplier, | 
					
						
							|  |  |  |             C * stem_multiplier, | 
					
						
							|  |  |  |             C, | 
					
						
							|  |  |  |             False, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         self.auxiliary_index = None | 
					
						
							|  |  |  |         self.auxiliary_head = None | 
					
						
							|  |  |  |         self.cells = nn.ModuleList() | 
					
						
							|  |  |  |         for index, (C_curr, reduction) in enumerate( | 
					
						
							|  |  |  |             zip(layer_channels, layer_reductions) | 
					
						
							|  |  |  |         ): | 
					
						
							|  |  |  |             cell = InferCell( | 
					
						
							|  |  |  |                 genotype, | 
					
						
							|  |  |  |                 C_prev_prev, | 
					
						
							|  |  |  |                 C_prev, | 
					
						
							|  |  |  |                 C_curr, | 
					
						
							|  |  |  |                 reduction, | 
					
						
							|  |  |  |                 reduction_prev, | 
					
						
							|  |  |  |                 affine, | 
					
						
							|  |  |  |                 track_running_stats, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             self.cells.append(cell) | 
					
						
							|  |  |  |             C_prev_prev, C_prev, reduction_prev = ( | 
					
						
							|  |  |  |                 C_prev, | 
					
						
							|  |  |  |                 cell._multiplier * C_curr, | 
					
						
							|  |  |  |                 reduction, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             if reduction and C_curr == C * 4 and auxiliary: | 
					
						
							|  |  |  |                 self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes) | 
					
						
							|  |  |  |                 self.auxiliary_index = index | 
					
						
							|  |  |  |         self._Layer = len(self.cells) | 
					
						
							|  |  |  |         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | 
					
						
							|  |  |  |         self.global_pooling = nn.AdaptiveAvgPool2d(1) | 
					
						
							|  |  |  |         self.classifier = nn.Linear(C_prev, num_classes) | 
					
						
							|  |  |  |         self.drop_path_prob = -1 | 
					
						
							| 
									
										
										
										
											2020-03-06 19:29:07 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-12 16:28:05 +08:00
										 |  |  |     def update_drop_path(self, drop_path_prob): | 
					
						
							|  |  |  |         self.drop_path_prob = drop_path_prob | 
					
						
							| 
									
										
										
										
											2020-03-06 19:29:07 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-12 16:28:05 +08:00
										 |  |  |     def auxiliary_param(self): | 
					
						
							|  |  |  |         if self.auxiliary_head is None: | 
					
						
							|  |  |  |             return [] | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             return list(self.auxiliary_head.parameters()) | 
					
						
							| 
									
										
										
										
											2020-03-06 19:29:07 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-12 16:28:05 +08:00
										 |  |  |     def get_message(self): | 
					
						
							|  |  |  |         string = self.extra_repr() | 
					
						
							|  |  |  |         for i, cell in enumerate(self.cells): | 
					
						
							|  |  |  |             string += "\n {:02d}/{:02d} :: {:}".format( | 
					
						
							|  |  |  |                 i, len(self.cells), cell.extra_repr() | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         return string | 
					
						
							| 
									
										
										
										
											2020-03-06 19:29:07 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-12 16:28:05 +08:00
										 |  |  |     def extra_repr(self): | 
					
						
							|  |  |  |         return "{name}(C={_C}, N={_layerN}, L={_Layer})".format( | 
					
						
							|  |  |  |             name=self.__class__.__name__, **self.__dict__ | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2020-03-06 19:29:07 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-12 16:28:05 +08:00
										 |  |  |     def forward(self, inputs): | 
					
						
							|  |  |  |         stem_feature, logits_aux = self.stem(inputs), None | 
					
						
							|  |  |  |         cell_results = [stem_feature, stem_feature] | 
					
						
							|  |  |  |         for i, cell in enumerate(self.cells): | 
					
						
							|  |  |  |             cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob) | 
					
						
							|  |  |  |             cell_results.append(cell_feature) | 
					
						
							|  |  |  |             if ( | 
					
						
							|  |  |  |                 self.auxiliary_index is not None | 
					
						
							|  |  |  |                 and i == self.auxiliary_index | 
					
						
							|  |  |  |                 and self.training | 
					
						
							|  |  |  |             ): | 
					
						
							|  |  |  |                 logits_aux = self.auxiliary_head(cell_results[-1]) | 
					
						
							|  |  |  |         out = self.lastact(cell_results[-1]) | 
					
						
							|  |  |  |         out = self.global_pooling(out) | 
					
						
							|  |  |  |         out = out.view(out.size(0), -1) | 
					
						
							|  |  |  |         logits = self.classifier(out) | 
					
						
							|  |  |  |         if logits_aux is None: | 
					
						
							|  |  |  |             return out, logits | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             return out, [logits, logits_aux] |