| 
									
										
										
										
											2020-02-23 10:30:37 +11:00
										 |  |  | ##################################################### | 
					
						
							|  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | 
					
						
							|  |  |  | ##################################################### | 
					
						
							| 
									
										
										
										
											2019-11-08 20:06:12 +11:00
										 |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from ..cell_operations import ResNetBasicblock | 
					
						
							|  |  |  | from .cells import InferCell | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | # The macro structure for architectures in NAS-Bench-201 | 
					
						
							| 
									
										
										
										
											2019-11-08 20:06:12 +11:00
										 |  |  | class TinyNetwork(nn.Module): | 
					
						
							| 
									
										
										
										
											2021-05-12 16:28:05 +08:00
										 |  |  |     def __init__(self, C, N, genotype, num_classes): | 
					
						
							|  |  |  |         super(TinyNetwork, self).__init__() | 
					
						
							|  |  |  |         self._C = C | 
					
						
							|  |  |  |         self._layerN = N | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.stem = nn.Sequential( | 
					
						
							|  |  |  |             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | 
					
						
							|  |  |  |         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         C_prev = C | 
					
						
							|  |  |  |         self.cells = nn.ModuleList() | 
					
						
							|  |  |  |         for index, (C_curr, reduction) in enumerate( | 
					
						
							|  |  |  |             zip(layer_channels, layer_reductions) | 
					
						
							|  |  |  |         ): | 
					
						
							|  |  |  |             if reduction: | 
					
						
							|  |  |  |                 cell = ResNetBasicblock(C_prev, C_curr, 2, True) | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 cell = InferCell(genotype, C_prev, C_curr, 1) | 
					
						
							|  |  |  |             self.cells.append(cell) | 
					
						
							|  |  |  |             C_prev = cell.out_dim | 
					
						
							|  |  |  |         self._Layer = len(self.cells) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | 
					
						
							|  |  |  |         self.global_pooling = nn.AdaptiveAvgPool2d(1) | 
					
						
							|  |  |  |         self.classifier = nn.Linear(C_prev, num_classes) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def get_message(self): | 
					
						
							|  |  |  |         string = self.extra_repr() | 
					
						
							|  |  |  |         for i, cell in enumerate(self.cells): | 
					
						
							|  |  |  |             string += "\n {:02d}/{:02d} :: {:}".format( | 
					
						
							|  |  |  |                 i, len(self.cells), cell.extra_repr() | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         return string | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def extra_repr(self): | 
					
						
							|  |  |  |         return "{name}(C={_C}, N={_layerN}, L={_Layer})".format( | 
					
						
							|  |  |  |             name=self.__class__.__name__, **self.__dict__ | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, inputs): | 
					
						
							|  |  |  |         feature = self.stem(inputs) | 
					
						
							|  |  |  |         for i, cell in enumerate(self.cells): | 
					
						
							|  |  |  |             feature = cell(feature) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         out = self.lastact(feature) | 
					
						
							|  |  |  |         out = self.global_pooling(out) | 
					
						
							|  |  |  |         out = out.view(out.size(0), -1) | 
					
						
							|  |  |  |         logits = self.classifier(out) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return out, logits |