77 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			77 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | import torch | ||
|  | import torch.nn as nn | ||
|  | from .construct_utils import drop_path | ||
|  | from .head_utils      import CifarHEAD, AuxiliaryHeadCIFAR | ||
|  | from .base_cells      import InferCell | ||
|  | 
 | ||
|  | 
 | ||
|  | class NetworkCIFAR(nn.Module): | ||
|  | 
 | ||
|  |   def __init__(self, C, N, stem_multiplier, auxiliary, genotype, num_classes): | ||
|  |     super(NetworkCIFAR, self).__init__() | ||
|  |     self._C               = C | ||
|  |     self._layerN          = N | ||
|  |     self._stem_multiplier = stem_multiplier | ||
|  | 
 | ||
|  |     C_curr = self._stem_multiplier * C | ||
|  |     self.stem = CifarHEAD(C_curr) | ||
|  |    | ||
|  |     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||
|  |     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||
|  |     block_indexs     = [0    ] * N + [-1  ] + [1    ] * N + [-1  ] + [2    ] * N | ||
|  |     block2index      = {0:[], 1:[], 2:[]} | ||
|  | 
 | ||
|  |     C_prev_prev, C_prev, C_curr = C_curr, C_curr, C | ||
|  |     reduction_prev, spatial, dims = False, 1, [] | ||
|  |     self.auxiliary_index = None | ||
|  |     self.auxiliary_head  = None | ||
|  |     self.cells = nn.ModuleList() | ||
|  |     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||
|  |       cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev) | ||
|  |       reduction_prev = reduction | ||
|  |       self.cells.append( cell ) | ||
|  |       C_prev_prev, C_prev = C_prev, cell._multiplier*C_curr | ||
|  |       if reduction and C_curr == C*4: | ||
|  |         if auxiliary: | ||
|  |           self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes) | ||
|  |           self.auxiliary_index = index | ||
|  | 
 | ||
|  |       if reduction: spatial *= 2 | ||
|  |       dims.append( (C_prev, spatial) ) | ||
|  |        | ||
|  |     self._Layer= len(self.cells) | ||
|  | 
 | ||
|  | 
 | ||
|  |     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||
|  |     self.classifier = nn.Linear(C_prev, num_classes) | ||
|  |     self.drop_path_prob = -1 | ||
|  | 
 | ||
|  |   def update_drop_path(self, drop_path_prob): | ||
|  |     self.drop_path_prob = drop_path_prob | ||
|  | 
 | ||
|  |   def auxiliary_param(self): | ||
|  |     if self.auxiliary_head is None: return [] | ||
|  |     else: return list( self.auxiliary_head.parameters() ) | ||
|  | 
 | ||
|  |   def get_message(self): | ||
|  |     return self.extra_repr() | ||
|  | 
 | ||
|  |   def extra_repr(self): | ||
|  |     return ('{name}(C={_C}, N={_layerN}, L={_Layer}, stem={_stem_multiplier}, drop-path={drop_path_prob})'.format(name=self.__class__.__name__, **self.__dict__)) | ||
|  | 
 | ||
|  |   def forward(self, inputs): | ||
|  |     stem_feature, logits_aux = self.stem(inputs), None | ||
|  |     cell_results = [stem_feature, stem_feature] | ||
|  |     for i, cell in enumerate(self.cells): | ||
|  |       cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob) | ||
|  |       cell_results.append( cell_feature ) | ||
|  | 
 | ||
|  |       if self.auxiliary_index is not None and i == self.auxiliary_index and self.training: | ||
|  |         logits_aux = self.auxiliary_head( cell_results[-1] ) | ||
|  |     out = self.global_pooling( cell_results[-1] ) | ||
|  |     out = out.view(out.size(0), -1) | ||
|  |     logits = self.classifier(out) | ||
|  | 
 | ||
|  |     if logits_aux is None: return out, logits | ||
|  |     else                 : return out, [logits, logits_aux] |