78 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			78 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | import torch | ||
|  | import torch.nn as nn | ||
|  | from .construct_utils import drop_path | ||
|  | from .base_cells import InferCell | ||
|  | from .head_utils import ImageNetHEAD, AuxiliaryHeadImageNet | ||
|  | 
 | ||
|  | 
 | ||
|  | class NetworkImageNet(nn.Module): | ||
|  | 
 | ||
|  |   def __init__(self, C, N, auxiliary, genotype, num_classes): | ||
|  |     super(NetworkImageNet, self).__init__() | ||
|  |     self._C          = C | ||
|  |     self._layerN     = N | ||
|  |     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4] * N | ||
|  |     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||
|  |     self.stem0 = nn.Sequential( | ||
|  |       nn.Conv2d(3, C // 2, kernel_size=3, stride=2, padding=1, bias=False), | ||
|  |       nn.BatchNorm2d(C // 2), | ||
|  |       nn.ReLU(inplace=True), | ||
|  |       nn.Conv2d(C // 2, C, 3, stride=2, padding=1, bias=False), | ||
|  |       nn.BatchNorm2d(C), | ||
|  |     ) | ||
|  | 
 | ||
|  |     self.stem1 = nn.Sequential( | ||
|  |       nn.ReLU(inplace=True), | ||
|  |       nn.Conv2d(C, C, 3, stride=2, padding=1, bias=False), | ||
|  |       nn.BatchNorm2d(C), | ||
|  |     ) | ||
|  | 
 | ||
|  |     C_prev_prev, C_prev, C_curr, reduction_prev = C, C, C, True | ||
|  | 
 | ||
|  |     self.cells = nn.ModuleList() | ||
|  |     self.auxiliary_index = None | ||
|  |     for i, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||
|  |       cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev) | ||
|  |       reduction_prev = reduction | ||
|  |       self.cells += [cell] | ||
|  |       C_prev_prev, C_prev = C_prev, cell._multiplier * C_curr | ||
|  |       if reduction and C_curr == C*4: | ||
|  |         C_to_auxiliary = C_prev | ||
|  |         self.auxiliary_index = i | ||
|  |    | ||
|  |     self._NNN = len(self.cells) | ||
|  |     if auxiliary: | ||
|  |       self.auxiliary_head = AuxiliaryHeadImageNet(C_to_auxiliary, num_classes) | ||
|  |     else: | ||
|  |       self.auxiliary_head = None | ||
|  |     self.global_pooling = nn.AvgPool2d(7) | ||
|  |     self.classifier     = nn.Linear(C_prev, num_classes) | ||
|  |     self.drop_path_prob = -1 | ||
|  | 
 | ||
|  |   def update_drop_path(self, drop_path_prob): | ||
|  |     self.drop_path_prob = drop_path_prob | ||
|  | 
 | ||
|  |   def extra_repr(self): | ||
|  |     return ('{name}(C={_C}, N=[{_layerN}, {_NNN}], aux-index={auxiliary_index}, drop-path={drop_path_prob})'.format(name=self.__class__.__name__, **self.__dict__)) | ||
|  | 
 | ||
|  |   def get_message(self): | ||
|  |     return self.extra_repr() | ||
|  | 
 | ||
|  |   def auxiliary_param(self): | ||
|  |     if self.auxiliary_head is None: return [] | ||
|  |     else: return list( self.auxiliary_head.parameters() ) | ||
|  | 
 | ||
|  |   def forward(self, inputs): | ||
|  |     s0 = self.stem0(inputs) | ||
|  |     s1 = self.stem1(s0) | ||
|  |     logits_aux = None | ||
|  |     for i, cell in enumerate(self.cells): | ||
|  |       s0, s1 = s1, cell(s0, s1, self.drop_path_prob) | ||
|  |       if i == self.auxiliary_index and self.auxiliary_head and self.training: | ||
|  |         logits_aux = self.auxiliary_head(s1) | ||
|  |     out = self.global_pooling(s1) | ||
|  |     logits = self.classifier(out.view(out.size(0), -1)) | ||
|  | 
 | ||
|  |     if logits_aux is None: return out, logits | ||
|  |     else                 : return out, [logits, logits_aux] |