| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  | ################################################## | 
					
						
							|  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | 
					
						
							|  |  |  | ###################################################################################### | 
					
						
							| 
									
										
										
										
											2020-08-30 08:04:52 +00:00
										 |  |  | # python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v1 --rand_seed 777 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --drop_path_rate 0.3 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1 | 
					
						
							| 
									
										
										
										
											2020-07-18 22:49:35 +00:00
										 |  |  | #### | 
					
						
							| 
									
										
										
										
											2020-08-30 08:04:52 +00:00
										 |  |  | # python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v2 --rand_seed 777 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2 | 
					
						
							| 
									
										
										
										
											2020-07-18 22:49:35 +00:00
										 |  |  | #### | 
					
						
							| 
									
										
										
										
											2020-08-30 08:04:52 +00:00
										 |  |  | # python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo gdas --rand_seed 777 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo gdas | 
					
						
							| 
									
										
										
										
											2020-07-19 08:29:08 +00:00
										 |  |  | #### | 
					
						
							| 
									
										
										
										
											2020-08-30 08:04:52 +00:00
										 |  |  | # python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo setn --rand_seed 777 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo setn | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo setn | 
					
						
							| 
									
										
										
										
											2020-07-19 09:07:05 +00:00
										 |  |  | #### | 
					
						
							| 
									
										
										
										
											2020-08-30 08:04:52 +00:00
										 |  |  | # python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo random --rand_seed 777 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo random | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo random | 
					
						
							| 
									
										
										
										
											2020-07-19 11:25:37 +00:00
										 |  |  | #### | 
					
						
							| 
									
										
										
										
											2020-08-30 08:04:52 +00:00
										 |  |  | # python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777 | 
					
						
							| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  | ###################################################################################### | 
					
						
							|  |  |  | import os, sys, time, random, argparse | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | from copy import deepcopy | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from pathlib import Path | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | 
					
						
							|  |  |  | if str(lib_dir) not in sys.path: | 
					
						
							|  |  |  |     sys.path.insert(0, str(lib_dir)) | 
					
						
							| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  | from config_utils import load_config, dict2config, configure2str | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from datasets import get_datasets, get_nas_search_loaders | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  | from procedures import ( | 
					
						
							|  |  |  |     prepare_seed, | 
					
						
							|  |  |  |     prepare_logger, | 
					
						
							|  |  |  |     save_checkpoint, | 
					
						
							|  |  |  |     copy_checkpoint, | 
					
						
							|  |  |  |     get_optim_scheduler, | 
					
						
							|  |  |  | ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from utils import count_parameters_in_MB, obtain_accuracy | 
					
						
							|  |  |  | from log_utils import AverageMeter, time_string, convert_secs2time | 
					
						
							|  |  |  | from models import get_cell_based_tiny_net, get_search_spaces | 
					
						
							|  |  |  | from nats_bench import create | 
					
						
							| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-07-19 08:11:29 +00:00
										 |  |  | # The following three functions are used for DARTS-V2 | 
					
						
							|  |  |  | def _concat(xs): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     return torch.cat([x.view(-1) for x in xs]) | 
					
						
							| 
									
										
										
										
											2020-07-19 08:11:29 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  | def _hessian_vector_product( | 
					
						
							|  |  |  |     vector, network, criterion, base_inputs, base_targets, r=1e-2 | 
					
						
							|  |  |  | ): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     R = r / _concat(vector).norm() | 
					
						
							|  |  |  |     for p, v in zip(network.weights, vector): | 
					
						
							|  |  |  |         p.data.add_(R, v) | 
					
						
							|  |  |  |     _, logits = network(base_inputs) | 
					
						
							|  |  |  |     loss = criterion(logits, base_targets) | 
					
						
							|  |  |  |     grads_p = torch.autograd.grad(loss, network.alphas) | 
					
						
							| 
									
										
										
										
											2020-07-19 08:11:29 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     for p, v in zip(network.weights, vector): | 
					
						
							|  |  |  |         p.data.sub_(2 * R, v) | 
					
						
							|  |  |  |     _, logits = network(base_inputs) | 
					
						
							|  |  |  |     loss = criterion(logits, base_targets) | 
					
						
							|  |  |  |     grads_n = torch.autograd.grad(loss, network.alphas) | 
					
						
							| 
									
										
										
										
											2020-07-19 08:11:29 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     for p, v in zip(network.weights, vector): | 
					
						
							|  |  |  |         p.data.add_(R, v) | 
					
						
							|  |  |  |     return [(x - y).div_(2 * R) for x, y in zip(grads_p, grads_n)] | 
					
						
							| 
									
										
										
										
											2020-07-19 08:11:29 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  | def backward_step_unrolled( | 
					
						
							|  |  |  |     network, | 
					
						
							|  |  |  |     criterion, | 
					
						
							|  |  |  |     base_inputs, | 
					
						
							|  |  |  |     base_targets, | 
					
						
							|  |  |  |     w_optimizer, | 
					
						
							|  |  |  |     arch_inputs, | 
					
						
							|  |  |  |     arch_targets, | 
					
						
							|  |  |  | ): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     # _compute_unrolled_model | 
					
						
							|  |  |  |     _, logits = network(base_inputs) | 
					
						
							|  |  |  |     loss = criterion(logits, base_targets) | 
					
						
							|  |  |  |     LR, WD, momentum = ( | 
					
						
							|  |  |  |         w_optimizer.param_groups[0]["lr"], | 
					
						
							|  |  |  |         w_optimizer.param_groups[0]["weight_decay"], | 
					
						
							|  |  |  |         w_optimizer.param_groups[0]["momentum"], | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |         theta = _concat(network.weights) | 
					
						
							|  |  |  |         try: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             moment = _concat( | 
					
						
							|  |  |  |                 w_optimizer.state[v]["momentum_buffer"] for v in network.weights | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             moment = moment.mul_(momentum) | 
					
						
							|  |  |  |         except: | 
					
						
							|  |  |  |             moment = torch.zeros_like(theta) | 
					
						
							|  |  |  |         dtheta = _concat(torch.autograd.grad(loss, network.weights)) + WD * theta | 
					
						
							|  |  |  |         params = theta.sub(LR, moment + dtheta) | 
					
						
							|  |  |  |     unrolled_model = deepcopy(network) | 
					
						
							|  |  |  |     model_dict = unrolled_model.state_dict() | 
					
						
							|  |  |  |     new_params, offset = {}, 0 | 
					
						
							|  |  |  |     for k, v in network.named_parameters(): | 
					
						
							|  |  |  |         if "arch_parameters" in k: | 
					
						
							|  |  |  |             continue | 
					
						
							|  |  |  |         v_length = np.prod(v.size()) | 
					
						
							|  |  |  |         new_params[k] = params[offset : offset + v_length].view(v.size()) | 
					
						
							|  |  |  |         offset += v_length | 
					
						
							|  |  |  |     model_dict.update(new_params) | 
					
						
							|  |  |  |     unrolled_model.load_state_dict(model_dict) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     unrolled_model.zero_grad() | 
					
						
							|  |  |  |     _, unrolled_logits = unrolled_model(arch_inputs) | 
					
						
							|  |  |  |     unrolled_loss = criterion(unrolled_logits, arch_targets) | 
					
						
							|  |  |  |     unrolled_loss.backward() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     dalpha = unrolled_model.arch_parameters.grad | 
					
						
							|  |  |  |     vector = [v.grad.data for v in unrolled_model.weights] | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     [implicit_grads] = _hessian_vector_product( | 
					
						
							|  |  |  |         vector, network, criterion, base_inputs, base_targets | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     dalpha.data.sub_(LR, implicit_grads.data) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if network.arch_parameters.grad is None: | 
					
						
							|  |  |  |         network.arch_parameters.grad = deepcopy(dalpha) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         network.arch_parameters.grad.data.copy_(dalpha.data) | 
					
						
							|  |  |  |     return unrolled_loss.detach(), unrolled_logits.detach() | 
					
						
							| 
									
										
										
										
											2020-07-19 08:11:29 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  | def search_func( | 
					
						
							|  |  |  |     xloader, | 
					
						
							|  |  |  |     network, | 
					
						
							|  |  |  |     criterion, | 
					
						
							|  |  |  |     scheduler, | 
					
						
							|  |  |  |     w_optimizer, | 
					
						
							|  |  |  |     a_optimizer, | 
					
						
							|  |  |  |     epoch_str, | 
					
						
							|  |  |  |     print_freq, | 
					
						
							|  |  |  |     algo, | 
					
						
							|  |  |  |     logger, | 
					
						
							|  |  |  | ): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     data_time, batch_time = AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |     base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |     arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
					
						
							| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  |     end = time.time() | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     network.train() | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate( | 
					
						
							|  |  |  |         xloader | 
					
						
							|  |  |  |     ): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         scheduler.update(None, 1.0 * step / len(xloader)) | 
					
						
							|  |  |  |         base_inputs = base_inputs.cuda(non_blocking=True) | 
					
						
							|  |  |  |         arch_inputs = arch_inputs.cuda(non_blocking=True) | 
					
						
							|  |  |  |         base_targets = base_targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |         arch_targets = arch_targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |         # measure data loading time | 
					
						
							|  |  |  |         data_time.update(time.time() - end) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Update the weights | 
					
						
							|  |  |  |         if algo == "setn": | 
					
						
							|  |  |  |             sampled_arch = network.dync_genotype(True) | 
					
						
							|  |  |  |             network.set_cal_mode("dynamic", sampled_arch) | 
					
						
							|  |  |  |         elif algo == "gdas": | 
					
						
							|  |  |  |             network.set_cal_mode("gdas", None) | 
					
						
							|  |  |  |         elif algo.startswith("darts"): | 
					
						
							|  |  |  |             network.set_cal_mode("joint", None) | 
					
						
							|  |  |  |         elif algo == "random": | 
					
						
							|  |  |  |             network.set_cal_mode("urs", None) | 
					
						
							|  |  |  |         elif algo == "enas": | 
					
						
							|  |  |  |             with torch.no_grad(): | 
					
						
							|  |  |  |                 network.controller.eval() | 
					
						
							|  |  |  |                 _, _, sampled_arch = network.controller() | 
					
						
							|  |  |  |             network.set_cal_mode("dynamic", sampled_arch) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("Invalid algo name : {:}".format(algo)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         network.zero_grad() | 
					
						
							|  |  |  |         _, logits = network(base_inputs) | 
					
						
							|  |  |  |         base_loss = criterion(logits, base_targets) | 
					
						
							|  |  |  |         base_loss.backward() | 
					
						
							|  |  |  |         w_optimizer.step() | 
					
						
							|  |  |  |         # record | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         base_prec1, base_prec5 = obtain_accuracy( | 
					
						
							|  |  |  |             logits.data, base_targets.data, topk=(1, 5) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         base_losses.update(base_loss.item(), base_inputs.size(0)) | 
					
						
							|  |  |  |         base_top1.update(base_prec1.item(), base_inputs.size(0)) | 
					
						
							|  |  |  |         base_top5.update(base_prec5.item(), base_inputs.size(0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # update the architecture-weight | 
					
						
							|  |  |  |         if algo == "setn": | 
					
						
							|  |  |  |             network.set_cal_mode("joint") | 
					
						
							|  |  |  |         elif algo == "gdas": | 
					
						
							|  |  |  |             network.set_cal_mode("gdas", None) | 
					
						
							|  |  |  |         elif algo.startswith("darts"): | 
					
						
							|  |  |  |             network.set_cal_mode("joint", None) | 
					
						
							|  |  |  |         elif algo == "random": | 
					
						
							|  |  |  |             network.set_cal_mode("urs", None) | 
					
						
							|  |  |  |         elif algo != "enas": | 
					
						
							|  |  |  |             raise ValueError("Invalid algo name : {:}".format(algo)) | 
					
						
							|  |  |  |         network.zero_grad() | 
					
						
							|  |  |  |         if algo == "darts-v2": | 
					
						
							|  |  |  |             arch_loss, logits = backward_step_unrolled( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 network, | 
					
						
							|  |  |  |                 criterion, | 
					
						
							|  |  |  |                 base_inputs, | 
					
						
							|  |  |  |                 base_targets, | 
					
						
							|  |  |  |                 w_optimizer, | 
					
						
							|  |  |  |                 arch_inputs, | 
					
						
							|  |  |  |                 arch_targets, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |             a_optimizer.step() | 
					
						
							|  |  |  |         elif algo == "random" or algo == "enas": | 
					
						
							|  |  |  |             with torch.no_grad(): | 
					
						
							|  |  |  |                 _, logits = network(arch_inputs) | 
					
						
							|  |  |  |                 arch_loss = criterion(logits, arch_targets) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             _, logits = network(arch_inputs) | 
					
						
							|  |  |  |             arch_loss = criterion(logits, arch_targets) | 
					
						
							|  |  |  |             arch_loss.backward() | 
					
						
							|  |  |  |             a_optimizer.step() | 
					
						
							|  |  |  |         # record | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         arch_prec1, arch_prec5 = obtain_accuracy( | 
					
						
							|  |  |  |             logits.data, arch_targets.data, topk=(1, 5) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         arch_losses.update(arch_loss.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |         arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |         arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # measure elapsed time | 
					
						
							|  |  |  |         batch_time.update(time.time() - end) | 
					
						
							|  |  |  |         end = time.time() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if step % print_freq == 0 or step + 1 == len(xloader): | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             Sstr = ( | 
					
						
							|  |  |  |                 "*SEARCH* " | 
					
						
							|  |  |  |                 + time_string() | 
					
						
							|  |  |  |                 + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader)) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( | 
					
						
							|  |  |  |                 batch_time=batch_time, data_time=data_time | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( | 
					
						
							|  |  |  |                 loss=base_losses, top1=base_top1, top5=base_top5 | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( | 
					
						
							|  |  |  |                 loss=arch_losses, top1=arch_top1, top5=arch_top5 | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     return ( | 
					
						
							|  |  |  |         base_losses.avg, | 
					
						
							|  |  |  |         base_top1.avg, | 
					
						
							|  |  |  |         base_top5.avg, | 
					
						
							|  |  |  |         arch_losses.avg, | 
					
						
							|  |  |  |         arch_top1.avg, | 
					
						
							|  |  |  |         arch_top5.avg, | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  | def train_controller( | 
					
						
							|  |  |  |     xloader, network, criterion, optimizer, prev_baseline, epoch_str, print_freq, logger | 
					
						
							|  |  |  | ): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     # config. (containing some necessary arg) | 
					
						
							|  |  |  |     #   baseline: The baseline score (i.e. average val_acc) from the previous epoch | 
					
						
							|  |  |  |     data_time, batch_time = AverageMeter(), AverageMeter() | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     ( | 
					
						
							|  |  |  |         GradnormMeter, | 
					
						
							|  |  |  |         LossMeter, | 
					
						
							|  |  |  |         ValAccMeter, | 
					
						
							|  |  |  |         EntropyMeter, | 
					
						
							|  |  |  |         BaselineMeter, | 
					
						
							|  |  |  |         RewardMeter, | 
					
						
							|  |  |  |         xend, | 
					
						
							|  |  |  |     ) = ( | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         AverageMeter(), | 
					
						
							|  |  |  |         AverageMeter(), | 
					
						
							|  |  |  |         AverageMeter(), | 
					
						
							|  |  |  |         AverageMeter(), | 
					
						
							|  |  |  |         AverageMeter(), | 
					
						
							|  |  |  |         AverageMeter(), | 
					
						
							|  |  |  |         time.time(), | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     controller_num_aggregate = 20 | 
					
						
							|  |  |  |     controller_train_steps = 50 | 
					
						
							|  |  |  |     controller_bl_dec = 0.99 | 
					
						
							|  |  |  |     controller_entropy_weight = 0.0001 | 
					
						
							| 
									
										
										
										
											2020-07-19 11:25:37 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  |     network.eval() | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     network.controller.train() | 
					
						
							|  |  |  |     network.controller.zero_grad() | 
					
						
							| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  |     loader_iter = iter(xloader) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     for step in range(controller_train_steps * controller_num_aggregate): | 
					
						
							|  |  |  |         try: | 
					
						
							|  |  |  |             inputs, targets = next(loader_iter) | 
					
						
							|  |  |  |         except: | 
					
						
							|  |  |  |             loader_iter = iter(xloader) | 
					
						
							|  |  |  |             inputs, targets = next(loader_iter) | 
					
						
							|  |  |  |         inputs = inputs.cuda(non_blocking=True) | 
					
						
							|  |  |  |         targets = targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |         # measure data loading time | 
					
						
							|  |  |  |         data_time.update(time.time() - xend) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         log_prob, entropy, sampled_arch = network.controller() | 
					
						
							|  |  |  |         with torch.no_grad(): | 
					
						
							|  |  |  |             network.set_cal_mode("dynamic", sampled_arch) | 
					
						
							|  |  |  |             _, logits = network(inputs) | 
					
						
							|  |  |  |             val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | 
					
						
							|  |  |  |             val_top1 = val_top1.view(-1) / 100 | 
					
						
							|  |  |  |         reward = val_top1 + controller_entropy_weight * entropy | 
					
						
							|  |  |  |         if prev_baseline is None: | 
					
						
							|  |  |  |             baseline = val_top1 | 
					
						
							|  |  |  |         else: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             baseline = prev_baseline - (1 - controller_bl_dec) * ( | 
					
						
							|  |  |  |                 prev_baseline - reward | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |         loss = -1 * log_prob * (reward - baseline) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # account | 
					
						
							|  |  |  |         RewardMeter.update(reward.item()) | 
					
						
							|  |  |  |         BaselineMeter.update(baseline.item()) | 
					
						
							|  |  |  |         ValAccMeter.update(val_top1.item() * 100) | 
					
						
							|  |  |  |         LossMeter.update(loss.item()) | 
					
						
							|  |  |  |         EntropyMeter.update(entropy.item()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Average gradient over controller_num_aggregate samples | 
					
						
							|  |  |  |         loss = loss / controller_num_aggregate | 
					
						
							|  |  |  |         loss.backward(retain_graph=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # measure elapsed time | 
					
						
							|  |  |  |         batch_time.update(time.time() - xend) | 
					
						
							|  |  |  |         xend = time.time() | 
					
						
							|  |  |  |         if (step + 1) % controller_num_aggregate == 0: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             grad_norm = torch.nn.utils.clip_grad_norm_( | 
					
						
							|  |  |  |                 network.controller.parameters(), 5.0 | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             GradnormMeter.update(grad_norm) | 
					
						
							|  |  |  |             optimizer.step() | 
					
						
							|  |  |  |             network.controller.zero_grad() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if step % print_freq == 0: | 
					
						
							|  |  |  |             Sstr = ( | 
					
						
							|  |  |  |                 "*Train-Controller* " | 
					
						
							|  |  |  |                 + time_string() | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 + " [{:}][{:03d}/{:03d}]".format( | 
					
						
							|  |  |  |                     epoch_str, step, controller_train_steps * controller_num_aggregate | 
					
						
							|  |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |             Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( | 
					
						
							|  |  |  |                 batch_time=batch_time, data_time=data_time | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})".format( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 loss=LossMeter, | 
					
						
							|  |  |  |                 top1=ValAccMeter, | 
					
						
							|  |  |  |                 reward=RewardMeter, | 
					
						
							|  |  |  |                 basel=BaselineMeter, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |             Estr = "Entropy={:.4f} ({:.4f})".format(EntropyMeter.val, EntropyMeter.avg) | 
					
						
							|  |  |  |             logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Estr) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_best_arch(xloader, network, n_samples, algo): | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |         network.eval() | 
					
						
							|  |  |  |         if algo == "random": | 
					
						
							|  |  |  |             archs, valid_accs = network.return_topK(n_samples, True), [] | 
					
						
							|  |  |  |         elif algo == "setn": | 
					
						
							|  |  |  |             archs, valid_accs = network.return_topK(n_samples, False), [] | 
					
						
							|  |  |  |         elif algo.startswith("darts") or algo == "gdas": | 
					
						
							|  |  |  |             arch = network.genotype | 
					
						
							|  |  |  |             archs, valid_accs = [arch], [] | 
					
						
							|  |  |  |         elif algo == "enas": | 
					
						
							|  |  |  |             archs, valid_accs = [], [] | 
					
						
							|  |  |  |             for _ in range(n_samples): | 
					
						
							|  |  |  |                 _, _, sampled_arch = network.controller() | 
					
						
							|  |  |  |                 archs.append(sampled_arch) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("Invalid algorithm name : {:}".format(algo)) | 
					
						
							| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  |         loader_iter = iter(xloader) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         for i, sampled_arch in enumerate(archs): | 
					
						
							|  |  |  |             network.set_cal_mode("dynamic", sampled_arch) | 
					
						
							|  |  |  |             try: | 
					
						
							|  |  |  |                 inputs, targets = next(loader_iter) | 
					
						
							|  |  |  |             except: | 
					
						
							|  |  |  |                 loader_iter = iter(xloader) | 
					
						
							|  |  |  |                 inputs, targets = next(loader_iter) | 
					
						
							|  |  |  |             _, logits = network(inputs.cuda(non_blocking=True)) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             val_top1, val_top5 = obtain_accuracy( | 
					
						
							|  |  |  |                 logits.cpu().data, targets.data, topk=(1, 5) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             valid_accs.append(val_top1.item()) | 
					
						
							|  |  |  |         best_idx = np.argmax(valid_accs) | 
					
						
							|  |  |  |         best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx] | 
					
						
							|  |  |  |         return best_arch, best_valid_acc | 
					
						
							| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-07-18 22:49:35 +00:00
										 |  |  | def valid_func(xloader, network, criterion, algo, logger): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     data_time, batch_time = AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |     arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |     end = time.time() | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |         network.eval() | 
					
						
							|  |  |  |         for step, (arch_inputs, arch_targets) in enumerate(xloader): | 
					
						
							|  |  |  |             arch_targets = arch_targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |             # measure data loading time | 
					
						
							|  |  |  |             data_time.update(time.time() - end) | 
					
						
							|  |  |  |             # prediction | 
					
						
							|  |  |  |             _, logits = network(arch_inputs.cuda(non_blocking=True)) | 
					
						
							|  |  |  |             arch_loss = criterion(logits, arch_targets) | 
					
						
							|  |  |  |             # record | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             arch_prec1, arch_prec5 = obtain_accuracy( | 
					
						
							|  |  |  |                 logits.data, arch_targets.data, topk=(1, 5) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             arch_losses.update(arch_loss.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |             arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |             arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |             # measure elapsed time | 
					
						
							|  |  |  |             batch_time.update(time.time() - end) | 
					
						
							|  |  |  |             end = time.time() | 
					
						
							|  |  |  |     return arch_losses.avg, arch_top1.avg, arch_top5.avg | 
					
						
							| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def main(xargs): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     assert torch.cuda.is_available(), "CUDA is not available." | 
					
						
							|  |  |  |     torch.backends.cudnn.enabled = True | 
					
						
							|  |  |  |     torch.backends.cudnn.benchmark = False | 
					
						
							|  |  |  |     torch.backends.cudnn.deterministic = True | 
					
						
							|  |  |  |     torch.set_num_threads(xargs.workers) | 
					
						
							|  |  |  |     prepare_seed(xargs.rand_seed) | 
					
						
							|  |  |  |     logger = prepare_logger(args) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     train_data, valid_data, xshape, class_num = get_datasets( | 
					
						
							|  |  |  |         xargs.dataset, xargs.data_path, -1 | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     if xargs.overwite_epochs is None: | 
					
						
							|  |  |  |         extra_info = {"class_num": class_num, "xshape": xshape} | 
					
						
							| 
									
										
										
										
											2020-07-18 22:49:35 +00:00
										 |  |  |     else: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         extra_info = { | 
					
						
							|  |  |  |             "class_num": class_num, | 
					
						
							|  |  |  |             "xshape": xshape, | 
					
						
							|  |  |  |             "epochs": xargs.overwite_epochs, | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     config = load_config(xargs.config_path, extra_info, logger) | 
					
						
							|  |  |  |     search_loader, train_loader, valid_loader = get_nas_search_loaders( | 
					
						
							|  |  |  |         train_data, | 
					
						
							|  |  |  |         valid_data, | 
					
						
							|  |  |  |         xargs.dataset, | 
					
						
							|  |  |  |         "configs/nas-benchmark/", | 
					
						
							|  |  |  |         (config.batch_size, config.test_batch_size), | 
					
						
							|  |  |  |         xargs.workers, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     logger.log( | 
					
						
							|  |  |  |         "||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( | 
					
						
							|  |  |  |             xargs.dataset, len(search_loader), len(valid_loader), config.batch_size | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     search_space = get_search_spaces(xargs.search_space, "nats-bench") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     model_config = dict2config( | 
					
						
							|  |  |  |         dict( | 
					
						
							|  |  |  |             name="generic", | 
					
						
							|  |  |  |             C=xargs.channel, | 
					
						
							|  |  |  |             N=xargs.num_cells, | 
					
						
							|  |  |  |             max_nodes=xargs.max_nodes, | 
					
						
							|  |  |  |             num_classes=class_num, | 
					
						
							|  |  |  |             space=search_space, | 
					
						
							|  |  |  |             affine=bool(xargs.affine), | 
					
						
							|  |  |  |             track_running_stats=bool(xargs.track_running_stats), | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         None, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     logger.log("search space : {:}".format(search_space)) | 
					
						
							|  |  |  |     logger.log("model config : {:}".format(model_config)) | 
					
						
							|  |  |  |     search_model = get_cell_based_tiny_net(model_config) | 
					
						
							|  |  |  |     search_model.set_algo(xargs.algo) | 
					
						
							|  |  |  |     logger.log("{:}".format(search_model)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     w_optimizer, w_scheduler, criterion = get_optim_scheduler( | 
					
						
							|  |  |  |         search_model.weights, config | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     a_optimizer = torch.optim.Adam( | 
					
						
							|  |  |  |         search_model.alphas, | 
					
						
							|  |  |  |         lr=xargs.arch_learning_rate, | 
					
						
							|  |  |  |         betas=(0.5, 0.999), | 
					
						
							|  |  |  |         weight_decay=xargs.arch_weight_decay, | 
					
						
							|  |  |  |         eps=xargs.arch_eps, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     logger.log("w-optimizer : {:}".format(w_optimizer)) | 
					
						
							|  |  |  |     logger.log("a-optimizer : {:}".format(a_optimizer)) | 
					
						
							|  |  |  |     logger.log("w-scheduler : {:}".format(w_scheduler)) | 
					
						
							|  |  |  |     logger.log("criterion   : {:}".format(criterion)) | 
					
						
							|  |  |  |     params = count_parameters_in_MB(search_model) | 
					
						
							|  |  |  |     logger.log("The parameters of the search model = {:.2f} MB".format(params)) | 
					
						
							|  |  |  |     logger.log("search-space : {:}".format(search_space)) | 
					
						
							|  |  |  |     if bool(xargs.use_api): | 
					
						
							|  |  |  |         api = create(None, "topology", fast_mode=True, verbose=False) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         api = None | 
					
						
							|  |  |  |     logger.log("{:} create API = {:} done".format(time_string(), api)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     last_info, model_base_path, model_best_path = ( | 
					
						
							|  |  |  |         logger.path("info"), | 
					
						
							|  |  |  |         logger.path("model"), | 
					
						
							|  |  |  |         logger.path("best"), | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     network, criterion = search_model.cuda(), criterion.cuda()  # use a single GPU | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     last_info, model_base_path, model_best_path = ( | 
					
						
							|  |  |  |         logger.path("info"), | 
					
						
							|  |  |  |         logger.path("model"), | 
					
						
							|  |  |  |         logger.path("best"), | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     if last_info.exists():  # automatically resume from previous checkpoint | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "=> loading checkpoint of the last-info '{:}' start".format(last_info) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         last_info = torch.load(last_info) | 
					
						
							|  |  |  |         start_epoch = last_info["epoch"] | 
					
						
							|  |  |  |         checkpoint = torch.load(last_info["last_checkpoint"]) | 
					
						
							|  |  |  |         genotypes = checkpoint["genotypes"] | 
					
						
							|  |  |  |         baseline = checkpoint["baseline"] | 
					
						
							|  |  |  |         valid_accuracies = checkpoint["valid_accuracies"] | 
					
						
							|  |  |  |         search_model.load_state_dict(checkpoint["search_model"]) | 
					
						
							|  |  |  |         w_scheduler.load_state_dict(checkpoint["w_scheduler"]) | 
					
						
							|  |  |  |         w_optimizer.load_state_dict(checkpoint["w_optimizer"]) | 
					
						
							|  |  |  |         a_optimizer.load_state_dict(checkpoint["a_optimizer"]) | 
					
						
							|  |  |  |         logger.log( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format( | 
					
						
							|  |  |  |                 last_info, start_epoch | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         logger.log("=> do not find the last-info file : {:}".format(last_info)) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         start_epoch, valid_accuracies, genotypes = ( | 
					
						
							|  |  |  |             0, | 
					
						
							|  |  |  |             {"best": -1}, | 
					
						
							|  |  |  |             {-1: network.return_topK(1, True)[0]}, | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         baseline = None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # start training | 
					
						
							|  |  |  |     start_time, search_time, epoch_time, total_epoch = ( | 
					
						
							|  |  |  |         time.time(), | 
					
						
							|  |  |  |         AverageMeter(), | 
					
						
							|  |  |  |         AverageMeter(), | 
					
						
							|  |  |  |         config.epochs + config.warmup, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     for epoch in range(start_epoch, total_epoch): | 
					
						
							|  |  |  |         w_scheduler.update(epoch, 0.0) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         need_time = "Time Left: {:}".format( | 
					
						
							|  |  |  |             convert_secs2time(epoch_time.val * (total_epoch - epoch), True) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "\n[Search the {:}-th epoch] {:}, LR={:}".format( | 
					
						
							|  |  |  |                 epoch_str, need_time, min(w_scheduler.get_lr()) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |         network.set_drop_path(float(epoch + 1) / total_epoch, xargs.drop_path_rate) | 
					
						
							|  |  |  |         if xargs.algo == "gdas": | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             network.set_tau( | 
					
						
							|  |  |  |                 xargs.tau_max | 
					
						
							|  |  |  |                 - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             logger.log( | 
					
						
							|  |  |  |                 "[RESET tau as : {:} and drop_path as {:}]".format( | 
					
						
							|  |  |  |                     network.tau, network.drop_path | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ( | 
					
						
							|  |  |  |             search_w_loss, | 
					
						
							|  |  |  |             search_w_top1, | 
					
						
							|  |  |  |             search_w_top5, | 
					
						
							|  |  |  |             search_a_loss, | 
					
						
							|  |  |  |             search_a_top1, | 
					
						
							|  |  |  |             search_a_top5, | 
					
						
							|  |  |  |         ) = search_func( | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             search_loader, | 
					
						
							|  |  |  |             network, | 
					
						
							|  |  |  |             criterion, | 
					
						
							|  |  |  |             w_scheduler, | 
					
						
							|  |  |  |             w_optimizer, | 
					
						
							|  |  |  |             a_optimizer, | 
					
						
							|  |  |  |             epoch_str, | 
					
						
							|  |  |  |             xargs.print_freq, | 
					
						
							|  |  |  |             xargs.algo, | 
					
						
							|  |  |  |             logger, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         search_time.update(time.time() - start_time) | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s".format( | 
					
						
							|  |  |  |                 epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format( | 
					
						
							|  |  |  |                 epoch_str, search_a_loss, search_a_top1, search_a_top5 | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         if xargs.algo == "enas": | 
					
						
							|  |  |  |             ctl_loss, ctl_acc, baseline, ctl_reward = train_controller( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 valid_loader, | 
					
						
							|  |  |  |                 network, | 
					
						
							|  |  |  |                 criterion, | 
					
						
							|  |  |  |                 a_optimizer, | 
					
						
							|  |  |  |                 baseline, | 
					
						
							|  |  |  |                 epoch_str, | 
					
						
							|  |  |  |                 xargs.print_freq, | 
					
						
							|  |  |  |                 logger, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |             logger.log( | 
					
						
							|  |  |  |                 "[{:}] controller : loss={:}, acc={:}, baseline={:}, reward={:}".format( | 
					
						
							|  |  |  |                     epoch_str, ctl_loss, ctl_acc, baseline, ctl_reward | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         genotype, temp_accuracy = get_best_arch( | 
					
						
							|  |  |  |             valid_loader, network, xargs.eval_candidate_num, xargs.algo | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         if xargs.algo == "setn" or xargs.algo == "enas": | 
					
						
							|  |  |  |             network.set_cal_mode("dynamic", genotype) | 
					
						
							|  |  |  |         elif xargs.algo == "gdas": | 
					
						
							|  |  |  |             network.set_cal_mode("gdas", None) | 
					
						
							|  |  |  |         elif xargs.algo.startswith("darts"): | 
					
						
							|  |  |  |             network.set_cal_mode("joint", None) | 
					
						
							|  |  |  |         elif xargs.algo == "random": | 
					
						
							|  |  |  |             network.set_cal_mode("urs", None) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("Invalid algorithm name : {:}".format(xargs.algo)) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "[{:}] - [get_best_arch] : {:} -> {:}".format( | 
					
						
							|  |  |  |                 epoch_str, genotype, temp_accuracy | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( | 
					
						
							|  |  |  |             valid_loader, network, criterion, xargs.algo, logger | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}".format( | 
					
						
							|  |  |  |                 epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         valid_accuracies[epoch] = valid_a_top1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         genotypes[epoch] = genotype | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         # save checkpoint | 
					
						
							|  |  |  |         save_path = save_checkpoint( | 
					
						
							|  |  |  |             { | 
					
						
							|  |  |  |                 "epoch": epoch + 1, | 
					
						
							|  |  |  |                 "args": deepcopy(xargs), | 
					
						
							|  |  |  |                 "baseline": baseline, | 
					
						
							|  |  |  |                 "search_model": search_model.state_dict(), | 
					
						
							|  |  |  |                 "w_optimizer": w_optimizer.state_dict(), | 
					
						
							|  |  |  |                 "a_optimizer": a_optimizer.state_dict(), | 
					
						
							|  |  |  |                 "w_scheduler": w_scheduler.state_dict(), | 
					
						
							|  |  |  |                 "genotypes": genotypes, | 
					
						
							|  |  |  |                 "valid_accuracies": valid_accuracies, | 
					
						
							|  |  |  |             }, | 
					
						
							|  |  |  |             model_base_path, | 
					
						
							|  |  |  |             logger, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         last_info = save_checkpoint( | 
					
						
							|  |  |  |             { | 
					
						
							|  |  |  |                 "epoch": epoch + 1, | 
					
						
							|  |  |  |                 "args": deepcopy(args), | 
					
						
							|  |  |  |                 "last_checkpoint": save_path, | 
					
						
							|  |  |  |             }, | 
					
						
							|  |  |  |             logger.path("info"), | 
					
						
							|  |  |  |             logger, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         with torch.no_grad(): | 
					
						
							|  |  |  |             logger.log("{:}".format(search_model.show_alphas())) | 
					
						
							|  |  |  |         if api is not None: | 
					
						
							|  |  |  |             logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200"))) | 
					
						
							|  |  |  |         # measure elapsed time | 
					
						
							|  |  |  |         epoch_time.update(time.time() - start_time) | 
					
						
							|  |  |  |         start_time = time.time() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # the final post procedure : count the time | 
					
						
							| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  |     start_time = time.time() | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     genotype, temp_accuracy = get_best_arch( | 
					
						
							|  |  |  |         valid_loader, network, xargs.eval_candidate_num, xargs.algo | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     if xargs.algo == "setn" or xargs.algo == "enas": | 
					
						
							|  |  |  |         network.set_cal_mode("dynamic", genotype) | 
					
						
							|  |  |  |     elif xargs.algo == "gdas": | 
					
						
							|  |  |  |         network.set_cal_mode("gdas", None) | 
					
						
							|  |  |  |     elif xargs.algo.startswith("darts"): | 
					
						
							|  |  |  |         network.set_cal_mode("joint", None) | 
					
						
							|  |  |  |     elif xargs.algo == "random": | 
					
						
							|  |  |  |         network.set_cal_mode("urs", None) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         raise ValueError("Invalid algorithm name : {:}".format(xargs.algo)) | 
					
						
							|  |  |  |     search_time.update(time.time() - start_time) | 
					
						
							| 
									
										
										
										
											2020-07-16 10:34:34 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( | 
					
						
							|  |  |  |         valid_loader, network, criterion, xargs.algo, logger | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     logger.log( | 
					
						
							|  |  |  |         "Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.".format( | 
					
						
							|  |  |  |             genotype, valid_a_top1 | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     logger.log("\n" + "-" * 100) | 
					
						
							|  |  |  |     # check the performance from the architecture dataset | 
					
						
							|  |  |  |     logger.log( | 
					
						
							|  |  |  |         "[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.".format( | 
					
						
							|  |  |  |             xargs.algo, total_epoch, search_time.sum, genotype | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     if api is not None: | 
					
						
							|  |  |  |         logger.log("{:}".format(api.query_by_arch(genotype, "200"))) | 
					
						
							|  |  |  |     logger.close() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser("Weight sharing NAS methods to search for cells.") | 
					
						
							|  |  |  |     parser.add_argument("--data_path", type=str, help="Path to dataset") | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--dataset", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         choices=["cifar10", "cifar100", "ImageNet16-120"], | 
					
						
							|  |  |  |         help="Choose between Cifar10/100 and ImageNet-16.", | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--search_space", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default="tss", | 
					
						
							|  |  |  |         choices=["tss"], | 
					
						
							|  |  |  |         help="The search space name.", | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--algo", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         choices=["darts-v1", "darts-v2", "gdas", "setn", "random", "enas"], | 
					
						
							|  |  |  |         help="The search space name.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "--use_api", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=1, | 
					
						
							|  |  |  |         choices=[0, 1], | 
					
						
							|  |  |  |         help="Whether use API or not (which will cost much memory).", | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     # FOR GDAS | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--tau_min", type=float, default=0.1, help="The minimum tau for Gumbel Softmax." | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--tau_max", type=float, default=10, help="The maximum tau for Gumbel Softmax." | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     # channels and number-of-cells | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--max_nodes", type=int, default=4, help="The maximum number of nodes." | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--channel", type=int, default=16, help="The number of channels." | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--num_cells", type=int, default=5, help="The number of cells in one stage." | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     # | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "--eval_candidate_num", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=100, | 
					
						
							|  |  |  |         help="The number of selected architectures to evaluate.", | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     # | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--track_running_stats", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=0, | 
					
						
							|  |  |  |         choices=[0, 1], | 
					
						
							|  |  |  |         help="Whether use track_running_stats or not in the BN layer.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "--affine", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=0, | 
					
						
							|  |  |  |         choices=[0, 1], | 
					
						
							|  |  |  |         help="Whether use affine=True or False in the BN layer.", | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--config_path", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default="./configs/nas-benchmark/algos/weight-sharing.config", | 
					
						
							|  |  |  |         help="The path of configuration.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "--overwite_epochs", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         help="The number of epochs to overwrite that value in config files.", | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     # architecture leraning rate | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--arch_learning_rate", | 
					
						
							|  |  |  |         type=float, | 
					
						
							|  |  |  |         default=3e-4, | 
					
						
							|  |  |  |         help="learning rate for arch encoding", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--arch_weight_decay", | 
					
						
							|  |  |  |         type=float, | 
					
						
							|  |  |  |         default=1e-3, | 
					
						
							|  |  |  |         help="weight decay for arch encoding", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--arch_eps", type=float, default=1e-8, help="weight decay for arch encoding" | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     parser.add_argument("--drop_path_rate", type=float, help="The drop path rate.") | 
					
						
							|  |  |  |     # log | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--workers", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=2, | 
					
						
							|  |  |  |         help="number of data loading workers (default: 2)", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--save_dir", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default="./output/search", | 
					
						
							|  |  |  |         help="Folder to save checkpoints and log.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--print_freq", type=int, default=200, help="print frequency (default: 200)" | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     parser.add_argument("--rand_seed", type=int, help="manual seed") | 
					
						
							|  |  |  |     args = parser.parse_args() | 
					
						
							|  |  |  |     if args.rand_seed is None or args.rand_seed < 0: | 
					
						
							|  |  |  |         args.rand_seed = random.randint(1, 100000) | 
					
						
							|  |  |  |     if args.overwite_epochs is None: | 
					
						
							|  |  |  |         args.save_dir = os.path.join( | 
					
						
							|  |  |  |             "{:}-{:}".format(args.save_dir, args.search_space), | 
					
						
							|  |  |  |             args.dataset, | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             "{:}-affine{:}_BN{:}-{:}".format( | 
					
						
							|  |  |  |                 args.algo, args.affine, args.track_running_stats, args.drop_path_rate | 
					
						
							|  |  |  |             ), | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         args.save_dir = os.path.join( | 
					
						
							|  |  |  |             "{:}-{:}".format(args.save_dir, args.search_space), | 
					
						
							|  |  |  |             args.dataset, | 
					
						
							|  |  |  |             "{:}-affine{:}_BN{:}-E{:}-{:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 args.algo, | 
					
						
							|  |  |  |                 args.affine, | 
					
						
							|  |  |  |                 args.track_running_stats, | 
					
						
							|  |  |  |                 args.overwite_epochs, | 
					
						
							|  |  |  |                 args.drop_path_rate, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ), | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     main(args) |