| 
									
										
										
										
											2020-07-24 12:56:34 +00:00
										 |  |  | ################################################## | 
					
						
							|  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | 
					
						
							| 
									
										
										
										
											2020-10-07 17:50:59 -07:00
										 |  |  | ########################################################################################################################################### | 
					
						
							| 
									
										
										
										
											2020-10-15 20:40:27 +11:00
										 |  |  | # | 
					
						
							| 
									
										
										
										
											2020-10-06 20:44:15 +11:00
										 |  |  | # In this file, we aims to evaluate three kinds of channel searching strategies: | 
					
						
							| 
									
										
										
										
											2020-10-07 17:50:59 -07:00
										 |  |  | # - channel-wise interpolation from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | 
					
						
							| 
									
										
										
										
											2020-10-15 20:40:27 +11:00
										 |  |  | # - masking + Gumbel-Softmax (mask_gumbel) from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | 
					
						
							|  |  |  | # - masking + sampling (mask_rl) from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # For simplicity, we use tas, mask_gumbel, and mask_rl to refer these three strategies. Their official implementations are at the following links: | 
					
						
							| 
									
										
										
										
											2021-03-01 21:02:29 +08:00
										 |  |  | # - TAS: https://github.com/D-X-Y/AutoDL-Projects/blob/main/docs/NeurIPS-2019-TAS.md | 
					
						
							| 
									
										
										
										
											2020-10-07 17:50:59 -07:00
										 |  |  | # - FBNetV2: https://github.com/facebookresearch/mobile-vision | 
					
						
							| 
									
										
										
										
											2020-10-08 10:19:34 +11:00
										 |  |  | # - TuNAS: https://github.com/google-research/google-research/tree/master/tunas | 
					
						
							| 
									
										
										
										
											2020-10-06 20:44:15 +11:00
										 |  |  | #### | 
					
						
							| 
									
										
										
										
											2020-10-15 20:40:27 +11:00
										 |  |  | # python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo mask_rl --arch_weight_decay 0 --warmup_ratio 0.25 | 
					
						
							| 
									
										
										
										
											2020-10-06 20:44:15 +11:00
										 |  |  | #### | 
					
						
							| 
									
										
										
										
											2020-08-30 08:04:52 +00:00
										 |  |  | # python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tas --rand_seed 777 | 
					
						
							| 
									
										
										
										
											2020-07-24 12:56:34 +00:00
										 |  |  | #### | 
					
						
							| 
									
										
										
										
											2020-10-15 20:40:27 +11:00
										 |  |  | # python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo mask_gumbel --rand_seed 777 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo mask_gumbel --rand_seed 777 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo mask_gumbel --rand_seed 777 | 
					
						
							| 
									
										
										
										
											2020-07-25 12:39:55 +00:00
										 |  |  | #### | 
					
						
							| 
									
										
										
										
											2020-10-15 20:40:27 +11:00
										 |  |  | # python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo mask_rl --arch_weight_decay 0 --rand_seed 777 --use_api 0 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo mask_rl --arch_weight_decay 0 --rand_seed 777 | 
					
						
							|  |  |  | # python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo mask_rl --arch_weight_decay 0 --rand_seed 777 | 
					
						
							| 
									
										
										
										
											2020-10-07 17:50:59 -07:00
										 |  |  | ########################################################################################################################################### | 
					
						
							| 
									
										
										
										
											2020-07-24 12:56:34 +00:00
										 |  |  | import os, sys, time, random, argparse | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | from copy import deepcopy | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from pathlib import Path | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | 
					
						
							|  |  |  | if str(lib_dir) not in sys.path: | 
					
						
							|  |  |  |     sys.path.insert(0, str(lib_dir)) | 
					
						
							| 
									
										
										
										
											2020-07-24 12:56:34 +00:00
										 |  |  | from config_utils import load_config, dict2config, configure2str | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from datasets import get_datasets, get_nas_search_loaders | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  | from procedures import ( | 
					
						
							|  |  |  |     prepare_seed, | 
					
						
							|  |  |  |     prepare_logger, | 
					
						
							|  |  |  |     save_checkpoint, | 
					
						
							|  |  |  |     copy_checkpoint, | 
					
						
							|  |  |  |     get_optim_scheduler, | 
					
						
							|  |  |  | ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from utils import count_parameters_in_MB, obtain_accuracy | 
					
						
							|  |  |  | from log_utils import AverageMeter, time_string, convert_secs2time | 
					
						
							|  |  |  | from models import get_cell_based_tiny_net, get_search_spaces | 
					
						
							|  |  |  | from nats_bench import create | 
					
						
							| 
									
										
										
										
											2020-07-24 12:56:34 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-15 21:56:10 +11:00
										 |  |  | # Ad-hoc for RL algorithms. | 
					
						
							| 
									
										
										
										
											2020-07-25 12:39:55 +00:00
										 |  |  | class ExponentialMovingAverage(object): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     """Class that maintains an exponential moving average.""" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __init__(self, momentum): | 
					
						
							|  |  |  |         self._numerator = 0 | 
					
						
							|  |  |  |         self._denominator = 0 | 
					
						
							|  |  |  |         self._momentum = momentum | 
					
						
							| 
									
										
										
										
											2020-07-25 12:39:55 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     def update(self, value): | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         self._numerator = ( | 
					
						
							|  |  |  |             self._momentum * self._numerator + (1 - self._momentum) * value | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         self._denominator = self._momentum * self._denominator + (1 - self._momentum) | 
					
						
							| 
									
										
										
										
											2020-07-25 12:39:55 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     @property | 
					
						
							|  |  |  |     def value(self): | 
					
						
							|  |  |  |         """Return the current value of the moving average""" | 
					
						
							|  |  |  |         return self._numerator / self._denominator | 
					
						
							| 
									
										
										
										
											2020-07-25 12:39:55 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | RL_BASELINE_EMA = ExponentialMovingAverage(0.95) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | def search_func( | 
					
						
							|  |  |  |     xloader, | 
					
						
							|  |  |  |     network, | 
					
						
							|  |  |  |     criterion, | 
					
						
							|  |  |  |     scheduler, | 
					
						
							|  |  |  |     w_optimizer, | 
					
						
							|  |  |  |     a_optimizer, | 
					
						
							|  |  |  |     enable_controller, | 
					
						
							|  |  |  |     algo, | 
					
						
							|  |  |  |     epoch_str, | 
					
						
							|  |  |  |     print_freq, | 
					
						
							|  |  |  |     logger, | 
					
						
							|  |  |  | ): | 
					
						
							|  |  |  |     data_time, batch_time = AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |     base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |     arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
					
						
							| 
									
										
										
										
											2020-07-24 12:56:34 +00:00
										 |  |  |     end = time.time() | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     network.train() | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate( | 
					
						
							|  |  |  |         xloader | 
					
						
							|  |  |  |     ): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         scheduler.update(None, 1.0 * step / len(xloader)) | 
					
						
							|  |  |  |         base_inputs = base_inputs.cuda(non_blocking=True) | 
					
						
							|  |  |  |         arch_inputs = arch_inputs.cuda(non_blocking=True) | 
					
						
							|  |  |  |         base_targets = base_targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |         arch_targets = arch_targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |         # measure data loading time | 
					
						
							|  |  |  |         data_time.update(time.time() - end) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Update the weights | 
					
						
							|  |  |  |         network.zero_grad() | 
					
						
							|  |  |  |         _, logits, _ = network(base_inputs) | 
					
						
							|  |  |  |         base_loss = criterion(logits, base_targets) | 
					
						
							|  |  |  |         base_loss.backward() | 
					
						
							|  |  |  |         w_optimizer.step() | 
					
						
							|  |  |  |         # record | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         base_prec1, base_prec5 = obtain_accuracy( | 
					
						
							|  |  |  |             logits.data, base_targets.data, topk=(1, 5) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         base_losses.update(base_loss.item(), base_inputs.size(0)) | 
					
						
							|  |  |  |         base_top1.update(base_prec1.item(), base_inputs.size(0)) | 
					
						
							|  |  |  |         base_top5.update(base_prec5.item(), base_inputs.size(0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # update the architecture-weight | 
					
						
							|  |  |  |         network.zero_grad() | 
					
						
							|  |  |  |         a_optimizer.zero_grad() | 
					
						
							|  |  |  |         _, logits, log_probs = network(arch_inputs) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         arch_prec1, arch_prec5 = obtain_accuracy( | 
					
						
							|  |  |  |             logits.data, arch_targets.data, topk=(1, 5) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         if algo == "mask_rl": | 
					
						
							|  |  |  |             with torch.no_grad(): | 
					
						
							|  |  |  |                 RL_BASELINE_EMA.update(arch_prec1.item()) | 
					
						
							|  |  |  |                 rl_advantage = arch_prec1 - RL_BASELINE_EMA.value | 
					
						
							|  |  |  |             rl_log_prob = sum(log_probs) | 
					
						
							|  |  |  |             arch_loss = -rl_advantage * rl_log_prob | 
					
						
							|  |  |  |         elif algo == "tas" or algo == "mask_gumbel": | 
					
						
							|  |  |  |             arch_loss = criterion(logits, arch_targets) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("invalid algorightm name: {:}".format(algo)) | 
					
						
							|  |  |  |         if enable_controller: | 
					
						
							|  |  |  |             arch_loss.backward() | 
					
						
							|  |  |  |             a_optimizer.step() | 
					
						
							|  |  |  |         # record | 
					
						
							|  |  |  |         arch_losses.update(arch_loss.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |         arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |         arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # measure elapsed time | 
					
						
							|  |  |  |         batch_time.update(time.time() - end) | 
					
						
							|  |  |  |         end = time.time() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if step % print_freq == 0 or step + 1 == len(xloader): | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             Sstr = ( | 
					
						
							|  |  |  |                 "*SEARCH* " | 
					
						
							|  |  |  |                 + time_string() | 
					
						
							|  |  |  |                 + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader)) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( | 
					
						
							|  |  |  |                 batch_time=batch_time, data_time=data_time | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( | 
					
						
							|  |  |  |                 loss=base_losses, top1=base_top1, top5=base_top5 | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( | 
					
						
							|  |  |  |                 loss=arch_losses, top1=arch_top1, top5=arch_top5 | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     return ( | 
					
						
							|  |  |  |         base_losses.avg, | 
					
						
							|  |  |  |         base_top1.avg, | 
					
						
							|  |  |  |         base_top5.avg, | 
					
						
							|  |  |  |         arch_losses.avg, | 
					
						
							|  |  |  |         arch_top1.avg, | 
					
						
							|  |  |  |         arch_top5.avg, | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2020-07-24 12:56:34 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def valid_func(xloader, network, criterion, logger): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     data_time, batch_time = AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |     arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |     end = time.time() | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |         network.eval() | 
					
						
							|  |  |  |         for step, (arch_inputs, arch_targets) in enumerate(xloader): | 
					
						
							|  |  |  |             arch_targets = arch_targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |             # measure data loading time | 
					
						
							|  |  |  |             data_time.update(time.time() - end) | 
					
						
							|  |  |  |             # prediction | 
					
						
							|  |  |  |             _, logits, _ = network(arch_inputs.cuda(non_blocking=True)) | 
					
						
							|  |  |  |             arch_loss = criterion(logits, arch_targets) | 
					
						
							|  |  |  |             # record | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             arch_prec1, arch_prec5 = obtain_accuracy( | 
					
						
							|  |  |  |                 logits.data, arch_targets.data, topk=(1, 5) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             arch_losses.update(arch_loss.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |             arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |             arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |             # measure elapsed time | 
					
						
							|  |  |  |             batch_time.update(time.time() - end) | 
					
						
							|  |  |  |             end = time.time() | 
					
						
							|  |  |  |     return arch_losses.avg, arch_top1.avg, arch_top5.avg | 
					
						
							| 
									
										
										
										
											2020-07-24 12:56:34 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def main(xargs): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     assert torch.cuda.is_available(), "CUDA is not available." | 
					
						
							|  |  |  |     torch.backends.cudnn.enabled = True | 
					
						
							|  |  |  |     torch.backends.cudnn.benchmark = False | 
					
						
							|  |  |  |     torch.backends.cudnn.deterministic = True | 
					
						
							|  |  |  |     torch.set_num_threads(xargs.workers) | 
					
						
							|  |  |  |     prepare_seed(xargs.rand_seed) | 
					
						
							|  |  |  |     logger = prepare_logger(args) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     train_data, valid_data, xshape, class_num = get_datasets( | 
					
						
							|  |  |  |         xargs.dataset, xargs.data_path, -1 | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     if xargs.overwite_epochs is None: | 
					
						
							|  |  |  |         extra_info = {"class_num": class_num, "xshape": xshape} | 
					
						
							| 
									
										
										
										
											2020-10-06 20:44:15 +11:00
										 |  |  |     else: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         extra_info = { | 
					
						
							|  |  |  |             "class_num": class_num, | 
					
						
							|  |  |  |             "xshape": xshape, | 
					
						
							|  |  |  |             "epochs": xargs.overwite_epochs, | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     config = load_config(xargs.config_path, extra_info, logger) | 
					
						
							|  |  |  |     search_loader, train_loader, valid_loader = get_nas_search_loaders( | 
					
						
							|  |  |  |         train_data, | 
					
						
							|  |  |  |         valid_data, | 
					
						
							|  |  |  |         xargs.dataset, | 
					
						
							|  |  |  |         "configs/nas-benchmark/", | 
					
						
							|  |  |  |         (config.batch_size, config.test_batch_size), | 
					
						
							|  |  |  |         xargs.workers, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     logger.log( | 
					
						
							|  |  |  |         "||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( | 
					
						
							|  |  |  |             xargs.dataset, len(search_loader), len(valid_loader), config.batch_size | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     search_space = get_search_spaces(xargs.search_space, "nats-bench") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     model_config = dict2config( | 
					
						
							|  |  |  |         dict( | 
					
						
							|  |  |  |             name="generic", | 
					
						
							|  |  |  |             super_type="search-shape", | 
					
						
							|  |  |  |             candidate_Cs=search_space["candidates"], | 
					
						
							|  |  |  |             max_num_Cs=search_space["numbers"], | 
					
						
							|  |  |  |             num_classes=class_num, | 
					
						
							|  |  |  |             genotype=args.genotype, | 
					
						
							|  |  |  |             affine=bool(xargs.affine), | 
					
						
							|  |  |  |             track_running_stats=bool(xargs.track_running_stats), | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         None, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     logger.log("search space : {:}".format(search_space)) | 
					
						
							|  |  |  |     logger.log("model config : {:}".format(model_config)) | 
					
						
							|  |  |  |     search_model = get_cell_based_tiny_net(model_config) | 
					
						
							|  |  |  |     search_model.set_algo(xargs.algo) | 
					
						
							|  |  |  |     logger.log("{:}".format(search_model)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     w_optimizer, w_scheduler, criterion = get_optim_scheduler( | 
					
						
							|  |  |  |         search_model.weights, config | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     a_optimizer = torch.optim.Adam( | 
					
						
							|  |  |  |         search_model.alphas, | 
					
						
							|  |  |  |         lr=xargs.arch_learning_rate, | 
					
						
							|  |  |  |         betas=(0.5, 0.999), | 
					
						
							|  |  |  |         weight_decay=xargs.arch_weight_decay, | 
					
						
							|  |  |  |         eps=xargs.arch_eps, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     logger.log("w-optimizer : {:}".format(w_optimizer)) | 
					
						
							|  |  |  |     logger.log("a-optimizer : {:}".format(a_optimizer)) | 
					
						
							|  |  |  |     logger.log("w-scheduler : {:}".format(w_scheduler)) | 
					
						
							|  |  |  |     logger.log("criterion   : {:}".format(criterion)) | 
					
						
							|  |  |  |     params = count_parameters_in_MB(search_model) | 
					
						
							|  |  |  |     logger.log("The parameters of the search model = {:.2f} MB".format(params)) | 
					
						
							|  |  |  |     logger.log("search-space : {:}".format(search_space)) | 
					
						
							|  |  |  |     if bool(xargs.use_api): | 
					
						
							|  |  |  |         api = create(None, "size", fast_mode=True, verbose=False) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         api = None | 
					
						
							|  |  |  |     logger.log("{:} create API = {:} done".format(time_string(), api)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     last_info, model_base_path, model_best_path = ( | 
					
						
							|  |  |  |         logger.path("info"), | 
					
						
							|  |  |  |         logger.path("model"), | 
					
						
							|  |  |  |         logger.path("best"), | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     network, criterion = search_model.cuda(), criterion.cuda()  # use a single GPU | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     last_info, model_base_path, model_best_path = ( | 
					
						
							|  |  |  |         logger.path("info"), | 
					
						
							|  |  |  |         logger.path("model"), | 
					
						
							|  |  |  |         logger.path("best"), | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     if last_info.exists():  # automatically resume from previous checkpoint | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "=> loading checkpoint of the last-info '{:}' start".format(last_info) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         last_info = torch.load(last_info) | 
					
						
							|  |  |  |         start_epoch = last_info["epoch"] | 
					
						
							|  |  |  |         checkpoint = torch.load(last_info["last_checkpoint"]) | 
					
						
							|  |  |  |         genotypes = checkpoint["genotypes"] | 
					
						
							|  |  |  |         valid_accuracies = checkpoint["valid_accuracies"] | 
					
						
							|  |  |  |         search_model.load_state_dict(checkpoint["search_model"]) | 
					
						
							|  |  |  |         w_scheduler.load_state_dict(checkpoint["w_scheduler"]) | 
					
						
							|  |  |  |         w_optimizer.load_state_dict(checkpoint["w_optimizer"]) | 
					
						
							|  |  |  |         a_optimizer.load_state_dict(checkpoint["a_optimizer"]) | 
					
						
							|  |  |  |         logger.log( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format( | 
					
						
							|  |  |  |                 last_info, start_epoch | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         logger.log("=> do not find the last-info file : {:}".format(last_info)) | 
					
						
							|  |  |  |         start_epoch, valid_accuracies, genotypes = 0, {"best": -1}, {-1: network.random} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # start training | 
					
						
							|  |  |  |     start_time, search_time, epoch_time, total_epoch = ( | 
					
						
							|  |  |  |         time.time(), | 
					
						
							|  |  |  |         AverageMeter(), | 
					
						
							|  |  |  |         AverageMeter(), | 
					
						
							|  |  |  |         config.epochs + config.warmup, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     for epoch in range(start_epoch, total_epoch): | 
					
						
							|  |  |  |         w_scheduler.update(epoch, 0.0) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         need_time = "Time Left: {:}".format( | 
					
						
							|  |  |  |             convert_secs2time(epoch_time.val * (total_epoch - epoch), True) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         if ( | 
					
						
							|  |  |  |             xargs.warmup_ratio is None | 
					
						
							|  |  |  |             or xargs.warmup_ratio <= float(epoch) / total_epoch | 
					
						
							|  |  |  |         ): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             enable_controller = True | 
					
						
							|  |  |  |             network.set_warmup_ratio(None) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             enable_controller = False | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             network.set_warmup_ratio( | 
					
						
							|  |  |  |                 1.0 - float(epoch) / total_epoch / xargs.warmup_ratio | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "\n[Search the {:}-th epoch] {:}, LR={:}, controller-warmup={:}, enable_controller={:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 epoch_str, | 
					
						
							|  |  |  |                 need_time, | 
					
						
							|  |  |  |                 min(w_scheduler.get_lr()), | 
					
						
							|  |  |  |                 network.warmup_ratio, | 
					
						
							|  |  |  |                 enable_controller, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if xargs.algo == "mask_gumbel" or xargs.algo == "tas": | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             network.set_tau( | 
					
						
							|  |  |  |                 xargs.tau_max | 
					
						
							|  |  |  |                 - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             logger.log("[RESET tau as : {:}]".format(network.tau)) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         ( | 
					
						
							|  |  |  |             search_w_loss, | 
					
						
							|  |  |  |             search_w_top1, | 
					
						
							|  |  |  |             search_w_top5, | 
					
						
							|  |  |  |             search_a_loss, | 
					
						
							|  |  |  |             search_a_top1, | 
					
						
							|  |  |  |             search_a_top5, | 
					
						
							|  |  |  |         ) = search_func( | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             search_loader, | 
					
						
							|  |  |  |             network, | 
					
						
							|  |  |  |             criterion, | 
					
						
							|  |  |  |             w_scheduler, | 
					
						
							|  |  |  |             w_optimizer, | 
					
						
							|  |  |  |             a_optimizer, | 
					
						
							|  |  |  |             enable_controller, | 
					
						
							|  |  |  |             xargs.algo, | 
					
						
							|  |  |  |             epoch_str, | 
					
						
							|  |  |  |             xargs.print_freq, | 
					
						
							|  |  |  |             logger, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         search_time.update(time.time() - start_time) | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s".format( | 
					
						
							|  |  |  |                 epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format( | 
					
						
							|  |  |  |                 epoch_str, search_a_loss, search_a_top1, search_a_top5 | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         genotype = network.genotype | 
					
						
							|  |  |  |         logger.log("[{:}] - [get_best_arch] : {:}".format(epoch_str, genotype)) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( | 
					
						
							|  |  |  |             valid_loader, network, criterion, logger | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}".format( | 
					
						
							|  |  |  |                 epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         valid_accuracies[epoch] = valid_a_top1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         genotypes[epoch] = genotype | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         # save checkpoint | 
					
						
							|  |  |  |         save_path = save_checkpoint( | 
					
						
							|  |  |  |             { | 
					
						
							|  |  |  |                 "epoch": epoch + 1, | 
					
						
							|  |  |  |                 "args": deepcopy(xargs), | 
					
						
							|  |  |  |                 "search_model": search_model.state_dict(), | 
					
						
							|  |  |  |                 "w_optimizer": w_optimizer.state_dict(), | 
					
						
							|  |  |  |                 "a_optimizer": a_optimizer.state_dict(), | 
					
						
							|  |  |  |                 "w_scheduler": w_scheduler.state_dict(), | 
					
						
							|  |  |  |                 "genotypes": genotypes, | 
					
						
							|  |  |  |                 "valid_accuracies": valid_accuracies, | 
					
						
							|  |  |  |             }, | 
					
						
							|  |  |  |             model_base_path, | 
					
						
							|  |  |  |             logger, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         last_info = save_checkpoint( | 
					
						
							|  |  |  |             { | 
					
						
							|  |  |  |                 "epoch": epoch + 1, | 
					
						
							|  |  |  |                 "args": deepcopy(args), | 
					
						
							|  |  |  |                 "last_checkpoint": save_path, | 
					
						
							|  |  |  |             }, | 
					
						
							|  |  |  |             logger.path("info"), | 
					
						
							|  |  |  |             logger, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         with torch.no_grad(): | 
					
						
							|  |  |  |             logger.log("{:}".format(search_model.show_alphas())) | 
					
						
							|  |  |  |         if api is not None: | 
					
						
							|  |  |  |             logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "90"))) | 
					
						
							|  |  |  |         # measure elapsed time | 
					
						
							|  |  |  |         epoch_time.update(time.time() - start_time) | 
					
						
							|  |  |  |         start_time = time.time() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # the final post procedure : count the time | 
					
						
							| 
									
										
										
										
											2020-07-24 12:56:34 +00:00
										 |  |  |     start_time = time.time() | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     genotype = network.genotype | 
					
						
							|  |  |  |     search_time.update(time.time() - start_time) | 
					
						
							| 
									
										
										
										
											2020-07-24 12:56:34 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( | 
					
						
							|  |  |  |         valid_loader, network, criterion, logger | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     logger.log( | 
					
						
							|  |  |  |         "Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.".format( | 
					
						
							|  |  |  |             genotype, valid_a_top1 | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     logger.log("\n" + "-" * 100) | 
					
						
							|  |  |  |     # check the performance from the architecture dataset | 
					
						
							|  |  |  |     logger.log( | 
					
						
							|  |  |  |         "[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.".format( | 
					
						
							|  |  |  |             xargs.algo, total_epoch, search_time.sum, genotype | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     if api is not None: | 
					
						
							|  |  |  |         logger.log("{:}".format(api.query_by_arch(genotype, "90"))) | 
					
						
							|  |  |  |     logger.close() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser("Weight sharing NAS methods to search for cells.") | 
					
						
							|  |  |  |     parser.add_argument("--data_path", type=str, help="Path to dataset") | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--dataset", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         choices=["cifar10", "cifar100", "ImageNet16-120"], | 
					
						
							|  |  |  |         help="Choose between Cifar10/100 and ImageNet-16.", | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--search_space", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default="sss", | 
					
						
							|  |  |  |         choices=["sss"], | 
					
						
							|  |  |  |         help="The search space name.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--algo", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         choices=["tas", "mask_gumbel", "mask_rl"], | 
					
						
							|  |  |  |         help="The search space name.", | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--genotype", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default="|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|", | 
					
						
							|  |  |  |         help="The genotype.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "--use_api", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=1, | 
					
						
							|  |  |  |         choices=[0, 1], | 
					
						
							|  |  |  |         help="Whether use API or not (which will cost much memory).", | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     # FOR GDAS | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--tau_min", type=float, default=0.1, help="The minimum tau for Gumbel Softmax." | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--tau_max", type=float, default=10, help="The maximum tau for Gumbel Softmax." | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     # FOR ALL | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--warmup_ratio", type=float, help="The warmup ratio, if None, not use warmup." | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     # | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--track_running_stats", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=0, | 
					
						
							|  |  |  |         choices=[0, 1], | 
					
						
							|  |  |  |         help="Whether use track_running_stats or not in the BN layer.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "--affine", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=0, | 
					
						
							|  |  |  |         choices=[0, 1], | 
					
						
							|  |  |  |         help="Whether use affine=True or False in the BN layer.", | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--config_path", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default="./configs/nas-benchmark/algos/weight-sharing.config", | 
					
						
							|  |  |  |         help="The path of configuration.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "--overwite_epochs", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         help="The number of epochs to overwrite that value in config files.", | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     # architecture leraning rate | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--arch_learning_rate", | 
					
						
							|  |  |  |         type=float, | 
					
						
							|  |  |  |         default=3e-4, | 
					
						
							|  |  |  |         help="learning rate for arch encoding", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--arch_weight_decay", | 
					
						
							|  |  |  |         type=float, | 
					
						
							|  |  |  |         default=1e-3, | 
					
						
							|  |  |  |         help="weight decay for arch encoding", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--arch_eps", type=float, default=1e-8, help="weight decay for arch encoding" | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     # log | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--workers", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=2, | 
					
						
							|  |  |  |         help="number of data loading workers (default: 2)", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--save_dir", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default="./output/search", | 
					
						
							|  |  |  |         help="Folder to save checkpoints and log.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--print_freq", type=int, default=200, help="print frequency (default: 200)" | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     parser.add_argument("--rand_seed", type=int, help="manual seed") | 
					
						
							|  |  |  |     args = parser.parse_args() | 
					
						
							|  |  |  |     if args.rand_seed is None or args.rand_seed < 0: | 
					
						
							|  |  |  |         args.rand_seed = random.randint(1, 100000) | 
					
						
							|  |  |  |     dirname = "{:}-affine{:}_BN{:}-AWD{:}-WARM{:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         args.algo, | 
					
						
							|  |  |  |         args.affine, | 
					
						
							|  |  |  |         args.track_running_stats, | 
					
						
							|  |  |  |         args.arch_weight_decay, | 
					
						
							|  |  |  |         args.warmup_ratio, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     if args.overwite_epochs is not None: | 
					
						
							|  |  |  |         dirname = dirname + "-E{:}".format(args.overwite_epochs) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     args.save_dir = os.path.join( | 
					
						
							|  |  |  |         "{:}-{:}".format(args.save_dir, args.search_space), args.dataset, dirname | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     main(args) |