xautodl/lib/models/__init__.py

130 lines
5.8 KiB
Python
Raw Normal View History

2019-09-28 10:24:47 +02:00
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import torch
from os import path as osp
2019-11-05 13:35:28 +01:00
# useful modules
2019-09-28 10:24:47 +02:00
from config_utils import dict2config
from .SharedUtils import change_key
from .clone_weights import init_from_model
2019-11-05 13:35:28 +01:00
# Cell-based NAS Models
def get_cell_based_tiny_net(config):
if config.name == 'DARTS-V1':
from .cell_searchs import TinyNetworkDartsV1
return TinyNetworkDartsV1(config.C, config.N, config.max_nodes, config.num_classes, config.space)
elif config.name == 'DARTS-V2':
from .cell_searchs import TinyNetworkDartsV2
return TinyNetworkDartsV2(config.C, config.N, config.max_nodes, config.num_classes, config.space)
elif config.name == 'GDAS':
from .cell_searchs import TinyNetworkGDAS
return TinyNetworkGDAS(config.C, config.N, config.max_nodes, config.num_classes, config.space)
elif config.name == 'SETN':
from .cell_searchs import TinyNetworkSETN
return TinyNetworkSETN(config.C, config.N, config.max_nodes, config.num_classes, config.space)
else:
raise ValueError('invalid network name : {:}'.format(config.name))
# obtain the search space, i.e., a dict mapping the operation name into a python-function for this op
def get_search_spaces(xtype, name):
if xtype == 'cell':
from .cell_operations import SearchSpaceNames
return SearchSpaceNames[name]
else:
raise ValueError('invalid search-space type is {:}'.format(xtype))
2019-09-28 10:24:47 +02:00
def get_cifar_models(config):
from .CifarResNet import CifarResNet
from .CifarWideResNet import CifarWideResNet
super_type = getattr(config, 'super_type', 'basic')
if super_type == 'basic':
if config.arch == 'resnet':
return CifarResNet(config.module, config.depth, config.class_num, config.zero_init_residual)
elif config.arch == 'wideresnet':
return CifarWideResNet(config.depth, config.wide_factor, config.class_num, config.dropout)
else:
raise ValueError('invalid module type : {:}'.format(config.arch))
elif super_type.startswith('infer'):
2019-11-05 13:35:28 +01:00
from .shape_infers import InferWidthCifarResNet
from .shape_infers import InferDepthCifarResNet
from .shape_infers import InferCifarResNet
2019-09-28 10:24:47 +02:00
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
infer_mode = super_type.split('-')[1]
if infer_mode == 'width':
return InferWidthCifarResNet(config.module, config.depth, config.xchannels, config.class_num, config.zero_init_residual)
elif infer_mode == 'depth':
return InferDepthCifarResNet(config.module, config.depth, config.xblocks, config.class_num, config.zero_init_residual)
elif infer_mode == 'shape':
return InferCifarResNet(config.module, config.depth, config.xblocks, config.xchannels, config.class_num, config.zero_init_residual)
else:
raise ValueError('invalid infer-mode : {:}'.format(infer_mode))
else:
raise ValueError('invalid super-type : {:}'.format(super_type))
def get_imagenet_models(config):
super_type = getattr(config, 'super_type', 'basic')
# NAS searched architecture
2019-09-28 12:18:18 +02:00
if super_type.startswith('infer'):
2019-09-28 10:24:47 +02:00
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
infer_mode = super_type.split('-')[1]
if infer_mode == 'shape':
2019-11-05 13:35:28 +01:00
from .shape_infers import InferImagenetResNet
from .shape_infers import InferMobileNetV2
2019-09-28 10:24:47 +02:00
if config.arch == 'resnet':
return InferImagenetResNet(config.block_name, config.layers, config.xblocks, config.xchannels, config.deep_stem, config.class_num, config.zero_init_residual)
elif config.arch == "MobileNetV2":
return InferMobileNetV2(config.class_num, config.xchannels, config.xblocks, config.dropout)
else:
raise ValueError('invalid arch-mode : {:}'.format(config.arch))
else:
raise ValueError('invalid infer-mode : {:}'.format(infer_mode))
else:
raise ValueError('invalid super-type : {:}'.format(super_type))
def obtain_model(config):
if config.dataset == 'cifar':
return get_cifar_models(config)
elif config.dataset == 'imagenet':
return get_imagenet_models(config)
else:
raise ValueError('invalid dataset in the model config : {:}'.format(config))
def obtain_search_model(config):
if config.dataset == 'cifar':
if config.arch == 'resnet':
2019-11-05 13:35:28 +01:00
from .shape_searchs import SearchWidthCifarResNet
from .shape_searchs import SearchDepthCifarResNet
from .shape_searchs import SearchShapeCifarResNet
2019-09-28 10:24:47 +02:00
if config.search_mode == 'width':
return SearchWidthCifarResNet(config.module, config.depth, config.class_num)
elif config.search_mode == 'depth':
return SearchDepthCifarResNet(config.module, config.depth, config.class_num)
elif config.search_mode == 'shape':
return SearchShapeCifarResNet(config.module, config.depth, config.class_num)
else: raise ValueError('invalid search mode : {:}'.format(config.search_mode))
else:
raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset))
elif config.dataset == 'imagenet':
2019-11-05 13:35:28 +01:00
from .shape_searchs import SearchShapeImagenetResNet
2019-09-28 10:24:47 +02:00
assert config.search_mode == 'shape', 'invalid search-mode : {:}'.format( config.search_mode )
if config.arch == 'resnet':
return SearchShapeImagenetResNet(config.block_name, config.layers, config.deep_stem, config.class_num)
else:
raise ValueError('invalid model config : {:}'.format(config))
else:
raise ValueError('invalid dataset in the model config : {:}'.format(config))
def load_net_from_checkpoint(checkpoint):
assert osp.isfile(checkpoint), 'checkpoint {:} does not exist'.format(checkpoint)
checkpoint = torch.load(checkpoint)
model_config = dict2config(checkpoint['model-config'], None)
model = obtain_model(model_config)
model.load_state_dict(checkpoint['base-model'])
return model