xautodl/notebooks/TOT/synthetic-env.ipynb

272 lines
284 KiB
Plaintext
Raw Normal View History

2021-04-22 14:31:20 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "filled-multiple",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The root path: /Users/xuanyidong/Desktop/AutoDL-Projects\n",
"The library path: /Users/xuanyidong/Desktop/AutoDL-Projects/lib\n"
]
}
],
"source": [
"import os, sys\n",
"import torch\n",
"from pathlib import Path\n",
"import numpy as np\n",
"import matplotlib\n",
"from matplotlib import cm\n",
"# matplotlib.use(\"agg\")\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.ticker as ticker\n",
"\n",
"\n",
"__file__ = os.path.dirname(os.path.realpath(\"__file__\"))\n",
"root_dir = (Path(__file__).parent / \"..\").resolve()\n",
"lib_dir = (root_dir / \"lib\").resolve()\n",
"print(\"The root path: {:}\".format(root_dir))\n",
"print(\"The library path: {:}\".format(lib_dir))\n",
"assert lib_dir.exists(), \"{:} does not exist\".format(lib_dir)\n",
"if str(lib_dir) not in sys.path:\n",
" sys.path.insert(0, str(lib_dir))\n",
"\n",
2021-04-22 17:08:43 +02:00
"from datasets import ConstantGenerator, SinGenerator, SyntheticDEnv\n",
2021-04-22 17:32:26 +02:00
"from datasets import DynamicQuadraticFunc"
2021-04-22 14:31:20 +02:00
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "detected-second",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-04-22 17:08:43 +02:00
"SyntheticDEnv(20/20 elements, ndim=1, num_per_task=100)\n"
2021-04-22 14:31:20 +02:00
]
},
{
"data": {
2021-04-22 17:32:26 +02:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAEd8AAAjuCAYAAADlSIdIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9b2yk94En+H1/JKvMUrckyjMaa+5KVnl99maSBlJ34O76RS6bu93Vu8wFhWCQwwwSGRtszSJoZGcs95tcKkkBFyBtSdhgggvq8sd9wN4BucU9yQXIAekccINcJpjdpQBO4GCw8npd1hAZWW2v2Xa3SFWR/OWFpR611WqLrWY/za7PB3igqu9DUl8IIEQWn/o+pdYaAAAAAAAAAAAAAAAAAAAAAABYJWttFwAAAAAAAAAAAAAAAAAAAAAAgEfN+A4AAAAAAAAAAAAAAAAAAAAAACvH+A4AAAAAAAAAAAAAAAAAAAAAACvH+A4AAAAAAAAAAAAAAAAAAAAAACvH+A4AAAAAAAAAAAAAAAAAAAAAACtno+0C3N+v/uqv1sFg0HYNAAAAAAAAAAAAAAAAAAAAAIBz58033/xRrfX5e50zvvOYGwwG2dnZabsGAAAAAAAAAAAAAAAAAAAAAMC5U0r5wSedW3uURQAAAAAAAAAAAAAAAAAAAAAA4HFgfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJVjfAcAAAAAAAAAAAAAAAAAAAAAgJWz0XaBJ00p5UKSfyvJKMl/Lcm/lJ//d/7zJP+/JH+c5L9I8l/WWm+11RMAAAAAAAAAAAAAAAAAAAAAYJUZ33mISin/3ST/6/x8cOcXffmD419P8s0PjtceXTsAAAAAAAAAAAAAAAAAAAAAAD5kfOchKaV8K8mrvxC/m2Se5FaSX0nyX0nyuUfbDAAAAAAAAAAAAAAAAAAAAACAX7TWdoEnQSnlf5G7h3f+70n+WpIXaq1/rdb6N2qtwyQXk/wbSWb5+SAPAAAAAAAAAAAAcM40TZPhcJitra0Mh8M0TdN2JQAAAAAAAAAewEbbBc67UsrXkvw7H4n+l7XW/8m9PrbWepTkDz84AAAAAAAAAAAAgHOmaZqMx+PUWtPr9bK3t5fxeJwkGY1GLbcDAAAAAAAA4DTW2i5wnpVSSpL/Xf7iv+P/7ZOGdwAAAAAAAAAAAIDzbzqdptaabrebUkq63W5qrZlOp21XAwAAAAAAAOCUjO98Nn8jyaUPHtckv9diFwAAAAAAAAAAAOCMzefzdDqdu7JOp5P5fN5OIQAAAAAAAAAemPGdz+Z/+JHHf1hr/W5rTQAAAAAAAAAAAIAzNxgMslwu78qWy2UGg0E7hQAAAAAAAAB4YMZ3Ppu/+ZHH/1lrLQAAAAAAAAAAAIBHYjKZpJSSxWKRWmsWi0VKKZlMJm1XAwAAAAAAAOCUjO88oFLKv5LkVz4S/fEH+b9WSvnfllL+aSnldinl5geP/w+llL/VTlsAAAAAAAAAAADgYRiNRpnNZun3+zk4OEi/389sNstoNGq7GgAAAAAAAACnVGqtbXc4l0opoyT/yUeifznJ30vyjdx/1Oi/SPJv11p/+Gn+Pdvb23VnZ+dBawIAAAAAAAAAAAAAAAAAAAAArKxSypu11u17nbvfSAz39ysfeXyU5N9J8s38xX/Tt/LzoZ0/SXLykY/9N5L8o1LKFz7pC5dS/k4pZaeUsnPjxo2H2xoAAAAAAAAAAAAAAAAAAAAAAOM7n8GzH3m8keTvfvD4/53kUq31L9da/81a6zBJP8n/6SMf/1KS//CTvnCt9d+vtW7XWreff/75h1wbAAAAAAAAAAAAAAAAAAAAAADjOw9u8x7Zm0n+Zq31//vRsNb650n+7ST/0Ufiv1FK+Ztn2A8AAAAAAAAAAAAAAAAAAAAAgE9gfOfB3b5H9j+qtR7c64NrrTXJ5STvfST+22dRDAAAAAAAAAAAAAAAAAAAAACA+zO+8+Bu/cLz79Za/9H9PqHW+i+S/Gcfif6bD70VAACPlaZpMhwOs7W1leFwmKZp2q4EAAAAAAAAAAAAAAAAAADE+M5n8aNfeP7mp/y8j37cv1RK2XxIfQAAeMw0TZPxeJy9vb30er3s7e1lPB4b4AEAAAAAAAAAAAAAAAAAgMeA8Z0H96e/8PzHn/LzfvHjnnsIXQAAeAxNp9PUWtPtdlNKSbfbTa010+m07WoAAAAAAAAAfAZN02Q4HGZrayvD4dBNWAAAAAAAAADOqY22C5xj/yzJIkn3g+ef+5Sft/kLzw8eWiMAAB4r8/k8vV7vrqzT6WQ+n7dTCAAAAAAAAIDPrGmajMfj1FrT6/Wyt7eX8XicJBmNRi23AwAAAAAAAOA01toucF7VWo+S/L8+Ev2lT/mpX/rI4/eT3HxopQAAeKwMBoMsl8u7suVymcFg0E4hAAAAAAAAAD6z6XSaWmu63W5KKel2u6m1Zjqdtl0NAAAAAAAAgFMyvvPZ/Ccfefy1UsrTn+Jz/tZHHv+jWmt9yJ0AAHhMTCaTlFKyWCxSa81isUgpJZPJpO1qAAAAAAAAADyg+XyeTqdzV9bpdDKfz9spBAAAAAAAAMADM77z2fzHSX72weOnkvyP7/fBpZT/dpJLH4n+L2dTCwCAx8FoNMpsNku/38/BwUH6/X5ms1lGo1Hb1QAAAAAAAAB4QIPBIMvl8q5suVxmMBi0UwgAAAAAAACAB1ZqrW13ONdKKf/TJNMPni6S/Fat9T+9x8f915P8P5I8/0F0I8mXaq237/f1t7e3687OzkNsDAAAAAAAAAAAADyopmkyHo9Ta02n08lyuUwpxc1YAAAAAAAAAB5TpZQ3a63b9zq39qjLPIG+leSPP3jcTfJ/LqX8x6WU/14p5V8vpfxbpZR/L8k/zl8M75wk+e//suEdAAAAAAAAAAAA4PEyGo0ym83S7/dzcHCQfr9veAcAAAAAAADgnCq11rY7nHullF9Ncj3Jv/opPvz9JH+71voffpqvvb29XXd2dj5LPQAAAAAAALijaZpMp9PM5/MMBoNMJhNvEAUAAAAAAAAAAADgiVVKebPWun2vc2uPusyTqNb6oyR/Lcn/PMmNT/iwkyT/1yTbn3Z4BwAAAAA
2021-04-22 14:31:20 +02:00
"text/plain": [
2021-04-22 17:32:26 +02:00
"<Figure size 5760x2880 with 2 Axes>"
2021-04-22 14:31:20 +02:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
2021-04-22 17:08:43 +02:00
"def visualize_env():\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
" dpi, width, height = 10, 800, 400\n",
2021-04-22 14:31:20 +02:00
" figsize = width / float(dpi), height / float(dpi)\n",
" LabelSize, LegendFontsize, font_gap = 40, 40, 5\n",
" \n",
" fig = plt.figure(figsize=figsize)\n",
" \n",
2021-04-22 17:08:43 +02:00
" timestamps = 20\n",
" mean_generator = SinGenerator(num=timestamps)\n",
" std_generator = SinGenerator(num=timestamps, min_amplitude=0.5, max_amplitude=0.5)\n",
" std_generator.set_transform(lambda x: x + 1)\n",
" dynamic_env = SyntheticDEnv([mean_generator], [[std_generator]], num_per_task=100)\n",
" print(dynamic_env)\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:32:26 +02:00
" function = DynamicQuadraticFunc()\n",
" function_param = dict()\n",
" function_param[0] = SinGenerator(num=timestamps, num_sin_phase=4, phase_shift=1.0, max_amplitude=1.0)\n",
" function_param[1] = ConstantGenerator(constant=0.9)\n",
" function_param[2] = SinGenerator(num=timestamps, num_sin_phase=5, phase_shift=0.4, max_amplitude=0.9)\n",
" function.set(function_param)\n",
" \n",
" timeaxis, xaxis, yaxis = [], [], []\n",
2021-04-22 17:08:43 +02:00
" for timestamp, dataset in dynamic_env:\n",
" num = dataset.shape[0]\n",
2021-04-22 17:32:26 +02:00
" timeaxis.append(torch.zeros(num) + timestamp)\n",
" xaxis.append(dataset[:,0])\n",
" # compute the ground truth\n",
" function.set_timestamp(timestamp)\n",
" yaxis.append(function(dataset[:,0]))\n",
" timeaxis = torch.cat(timeaxis).numpy()\n",
2021-04-22 17:08:43 +02:00
" xaxis = torch.cat(xaxis).numpy()\n",
" yaxis = torch.cat(yaxis).numpy()\n",
"\n",
" cur_ax = fig.add_subplot(2, 1, 1)\n",
2021-04-22 17:32:26 +02:00
" cur_ax.scatter(timeaxis, xaxis, color=\"k\", linestyle=\"-\", alpha=0.9, label=None)\n",
2021-04-22 17:08:43 +02:00
" cur_ax.set_xlabel(\"Time\", fontsize=LabelSize)\n",
" cur_ax.set_ylabel(\"X\", rotation=0, fontsize=LabelSize)\n",
" for tick in cur_ax.xaxis.get_major_ticks():\n",
" tick.label.set_fontsize(LabelSize - font_gap)\n",
" tick.label.set_rotation(10)\n",
" for tick in cur_ax.yaxis.get_major_ticks():\n",
" tick.label.set_fontsize(LabelSize - font_gap)\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
" cur_ax = fig.add_subplot(2, 1, 2)\n",
2021-04-22 17:32:26 +02:00
" cur_ax.scatter(timeaxis, yaxis, color=\"k\", linestyle=\"-\", alpha=0.9, label=None)\n",
2021-04-22 17:08:43 +02:00
" cur_ax.set_xlabel(\"Time\", fontsize=LabelSize)\n",
2021-04-22 17:32:26 +02:00
" cur_ax.set_ylabel(\"Y\", rotation=0, fontsize=LabelSize)\n",
2021-04-22 17:08:43 +02:00
" for tick in cur_ax.xaxis.get_major_ticks():\n",
" tick.label.set_fontsize(LabelSize - font_gap)\n",
" tick.label.set_rotation(10)\n",
" for tick in cur_ax.yaxis.get_major_ticks():\n",
" tick.label.set_fontsize(LabelSize - font_gap)\n",
" plt.show()\n",
2021-04-22 14:31:20 +02:00
"\n",
2021-04-22 17:08:43 +02:00
"visualize_env()"
2021-04-22 14:31:20 +02:00
]
},
{
"cell_type": "code",
2021-04-22 17:08:43 +02:00
"execution_count": 3,
2021-04-22 14:31:20 +02:00
"id": "supreme-basis",
"metadata": {},
"outputs": [],
"source": [
2021-04-22 17:08:43 +02:00
"# def optimize_fn(xs, ys, test_sets):\n",
"# xs = torch.FloatTensor(xs).view(-1, 1)\n",
"# ys = torch.FloatTensor(ys).view(-1, 1)\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
"# model = SuperSequential(\n",
"# SuperMLPv1(1, 10, 20, torch.nn.ReLU),\n",
"# SuperMLPv1(20, 10, 1, torch.nn.ReLU)\n",
"# )\n",
"# optimizer = torch.optim.Adam(\n",
"# model.parameters(),\n",
"# lr=0.01, weight_decay=1e-4, amsgrad=True\n",
"# )\n",
"# for _iter in range(100):\n",
"# preds = model(ys)\n",
2021-04-22 14:31:20 +02:00
"\n",
2021-04-22 17:08:43 +02:00
"# optimizer.zero_grad()\n",
"# loss = torch.nn.functional.mse_loss(preds, ys)\n",
"# loss.backward()\n",
"# optimizer.step()\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
"# with torch.no_grad():\n",
"# answers = []\n",
"# for test_set in test_sets:\n",
"# test_set = torch.FloatTensor(test_set).view(-1, 1)\n",
"# preds = model(test_set).view(-1).numpy()\n",
"# answers.append(preds.tolist())\n",
"# return answers\n",
2021-04-22 14:31:20 +02:00
"\n",
2021-04-22 17:08:43 +02:00
"# def f(x):\n",
"# return np.cos( 0.5 * x + x * x)\n",
2021-04-22 14:31:20 +02:00
"\n",
2021-04-22 17:08:43 +02:00
"# def get_data(mode):\n",
"# dataset = SynAdaptiveEnv(mode=mode)\n",
"# times, xs, ys = [], [], []\n",
"# for i, (_, t, x) in enumerate(dataset):\n",
"# times.append(t)\n",
"# xs.append(x)\n",
"# dataset.set_transform(f)\n",
"# for i, (_, _, y) in enumerate(dataset):\n",
"# ys.append(y)\n",
"# return times, xs, ys\n",
2021-04-22 14:31:20 +02:00
"\n",
2021-04-22 17:08:43 +02:00
"# def visualize_syn(save_path):\n",
"# save_dir = (save_path / '..').resolve()\n",
"# save_dir.mkdir(parents=True, exist_ok=True)\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
"# dpi, width, height = 40, 2000, 900\n",
"# figsize = width / float(dpi), height / float(dpi)\n",
"# LabelSize, LegendFontsize, font_gap = 40, 40, 5\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
"# fig = plt.figure(figsize=figsize)\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
"# times, xs, ys = get_data(None)\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
"# def draw_ax(cur_ax, xaxis, yaxis, xlabel, ylabel,\n",
"# alpha=0.1, color='k', linestyle='-', legend=None, plot_only=False):\n",
"# if legend is not None:\n",
"# cur_ax.plot(xaxis[:1], yaxis[:1], color=color, label=legend)\n",
"# cur_ax.plot(xaxis, yaxis, color=color, linestyle=linestyle, alpha=alpha, label=None)\n",
"# if not plot_only:\n",
"# cur_ax.set_xlabel(xlabel, fontsize=LabelSize)\n",
"# cur_ax.set_ylabel(ylabel, rotation=0, fontsize=LabelSize)\n",
"# for tick in cur_ax.xaxis.get_major_ticks():\n",
"# tick.label.set_fontsize(LabelSize - font_gap)\n",
"# tick.label.set_rotation(10)\n",
"# for tick in cur_ax.yaxis.get_major_ticks():\n",
"# tick.label.set_fontsize(LabelSize - font_gap)\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
"# cur_ax = fig.add_subplot(2, 1, 1)\n",
"# draw_ax(cur_ax, times, xs, \"time\", \"x\", alpha=1.0, legend=None)\n",
2021-04-22 14:31:20 +02:00
"\n",
2021-04-22 17:08:43 +02:00
"# cur_ax = fig.add_subplot(2, 1, 2)\n",
"# draw_ax(cur_ax, times, ys, \"time\", \"y\", alpha=0.1, legend=\"ground truth\")\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
"# train_times, train_xs, train_ys = get_data(\"train\")\n",
"# draw_ax(cur_ax, train_times, train_ys, None, None, alpha=1.0, color='r', legend=None, plot_only=True)\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
"# valid_times, valid_xs, valid_ys = get_data(\"valid\")\n",
"# draw_ax(cur_ax, valid_times, valid_ys, None, None, alpha=1.0, color='g', legend=None, plot_only=True)\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
"# test_times, test_xs, test_ys = get_data(\"test\")\n",
"# draw_ax(cur_ax, test_times, test_ys, None, None, alpha=1.0, color='b', legend=None, plot_only=True)\n",
2021-04-22 14:31:20 +02:00
" \n",
2021-04-22 17:08:43 +02:00
"# # optimize MLP models\n",
"# # [train_preds, valid_preds, test_preds] = optimize_fn(train_xs, train_ys, [train_xs, valid_xs, test_xs])\n",
"# # draw_ax(cur_ax, train_times, train_preds, None, None,\n",
"# # alpha=1.0, linestyle='--', color='r', legend=\"MLP\", plot_only=True)\n",
"# # import pdb; pdb.set_trace()\n",
"# # draw_ax(cur_ax, valid_times, valid_preds, None, None,\n",
"# # alpha=1.0, linestyle='--', color='g', legend=None, plot_only=True)\n",
"# # draw_ax(cur_ax, test_times, test_preds, None, None,\n",
"# # alpha=1.0, linestyle='--', color='b', legend=None, plot_only=True)\n",
2021-04-22 14:31:20 +02:00
"\n",
2021-04-22 17:08:43 +02:00
"# plt.legend(loc=1, fontsize=LegendFontsize)\n",
2021-04-22 14:31:20 +02:00
"\n",
2021-04-22 17:08:43 +02:00
"# fig.savefig(save_path, dpi=dpi, bbox_inches=\"tight\", format=\"pdf\")\n",
"# plt.close(\"all\")\n",
"# # plt.show()"
2021-04-22 14:31:20 +02:00
]
},
{
"cell_type": "code",
2021-04-22 17:08:43 +02:00
"execution_count": 4,
2021-04-22 14:31:20 +02:00
"id": "shared-envelope",
"metadata": {},
2021-04-22 17:08:43 +02:00
"outputs": [],
2021-04-22 14:31:20 +02:00
"source": [
"# Visualization\n",
"# home_dir = Path.home()\n",
"# desktop_dir = home_dir / 'Desktop'\n",
"# print('The Desktop is at: {:}'.format(desktop_dir))\n",
"# visualize_syn(desktop_dir / 'tot-synthetic-v0.pdf')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}