# Image Classification based on NAS-Searched Models
This directory contains 10 image classification models.
Nine of them are automatically searched models from different Neural Architecture Search (NAS) algorithms. The other is the residual network.
We provide codes and scripts to train these models on both CIFAR-10 and CIFAR-100.
We use the standard data augmentation, i.e., random crop, random flip, and normalization.
---
## Table of Contents
- [Installation](#installation)
- [Data Preparation](#data-preparation)
- [Training Models](#training-models)
- [Project Structure](#project-structure)
- [Citation](#citation)
### Installation
This project has the following requirements:
- Python = 3.6
- PadddlePaddle Fluid >= v0.15.0
### Data Preparation
Please download [CIFAR-10](https://dataset.bj.bcebos.com/cifar/cifar-10-python.tar.gz) and [CIFAR-100](https://dataset.bj.bcebos.com/cifar/cifar-100-python.tar.gz) before running the codes.
Note that the MD5 of CIFAR-10-Python compressed file is `c58f30108f718f92721af3b95e74349a` and the MD5 of CIFAR-100-Python compressed file is `eb9058c3a382ffc7106e4002c42a8d85`.
Please save the file into `${TORCH_HOME}/cifar.python`.
After data preparation, there should be two files `${TORCH_HOME}/cifar.python/cifar-10-python.tar.gz` and `${TORCH_HOME}/cifar.python/cifar-100-python.tar.gz`.
### Training Models
After setting up the environment and preparing the data, one can train the model. The main function entrance is `train_cifar.py`. We also provide some scripts for easy usage.
title = {Efficient Neural Architecture Search via Parameter Sharing},
author = {Pham, Hieu and Guan, Melody and Zoph, Barret and Le, Quoc and Dean, Jeff},
booktitle = {International Conference on Machine Learning (ICML)},
pages = {4092--4101},
year = {2018}
}
@inproceedings{liu2018progressive,
title = {Progressive neural architecture search},
author = {Liu, Chenxi and Zoph, Barret and Neumann, Maxim and Shlens, Jonathon and Hua, Wei and Li, Li-Jia and Fei-Fei, Li and Yuille, Alan and Huang, Jonathan and Murphy, Kevin},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
pages = {19--34},
year = {2018}
}
@inproceedings{zoph2018learning,
title = {Learning transferable architectures for scalable image recognition},
author = {Zoph, Barret and Vasudevan, Vijay and Shlens, Jonathon and Le, Quoc V},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages = {8697--8710},
year = {2018}
}
@inproceedings{real2019regularized,
title = {Regularized evolution for image classifier architecture search},
author = {Real, Esteban and Aggarwal, Alok and Huang, Yanping and Le, Quoc V},