xautodl/exps/NATS-Bench/draw-ranks.py

131 lines
6.1 KiB
Python
Raw Normal View History

2020-12-01 15:25:23 +01:00
###############################################################
2021-01-25 14:48:14 +01:00
# NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021 #
2020-12-01 15:25:23 +01:00
# The code to draw Figure 2 / 3 / 4 / 5 in our paper. #
###############################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
###############################################################
# Usage: python exps/NATS-Bench/draw-ranks.py #
###############################################################
import os, sys, time, torch, argparse
import scipy
import numpy as np
from typing import List, Text, Dict, Any
from shutil import copyfile
from collections import defaultdict, OrderedDict
2020-12-01 15:25:23 +01:00
from copy import deepcopy
from pathlib import Path
import matplotlib
import seaborn as sns
matplotlib.use('agg')
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import dict2config, load_config
from log_utils import time_string
from models import get_cell_based_tiny_net
from nats_bench import create
name2label = {'cifar10': 'CIFAR-10',
'cifar100': 'CIFAR-100',
'ImageNet16-120': 'ImageNet-16-120'}
def visualize_relative_info(vis_save_dir, search_space, indicator, topk):
2020-12-01 15:25:23 +01:00
vis_save_dir = vis_save_dir.resolve()
print ('{:} start to visualize {:} with top-{:} information'.format(time_string(), search_space, topk))
2020-12-01 15:25:23 +01:00
vis_save_dir.mkdir(parents=True, exist_ok=True)
cache_file_path = vis_save_dir / 'cache-{:}-info.pth'.format(search_space)
datasets = ['cifar10', 'cifar100', 'ImageNet16-120']
if not cache_file_path.exists():
api = create(None, search_space, fast_mode=False, verbose=False)
all_infos = OrderedDict()
for index in range(len(api)):
all_info = OrderedDict()
for dataset in datasets:
info_less = api.get_more_info(index, dataset, hp='12', is_random=False)
info_more = api.get_more_info(index, dataset, hp=api.full_train_epochs, is_random=False)
all_info[dataset] = dict(less=info_less['test-accuracy'],
more=info_more['test-accuracy'])
all_infos[index] = all_info
torch.save(all_infos, cache_file_path)
print ('{:} save all cache data into {:}'.format(time_string(), cache_file_path))
else:
api = create(None, search_space, fast_mode=True, verbose=False)
all_infos = torch.load(cache_file_path)
2020-12-01 15:25:23 +01:00
dpi, width, height = 250, 5000, 1300
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize = 16, 16
2020-12-01 15:25:23 +01:00
fig, axs = plt.subplots(1, 3, figsize=figsize)
datasets = ['cifar10', 'cifar100', 'ImageNet16-120']
def sub_plot_fn(ax, dataset, indicator):
performances = []
# pickup top 10% architectures
for _index in range(len(api)):
performances.append((all_infos[_index][dataset][indicator], _index))
performances = sorted(performances, reverse=True)
performances = performances[: int(len(api) * topk * 0.01)]
selected_indexes = [x[1] for x in performances]
print('{:} plot {:10s} with {:}, {:} architectures'.format(time_string(), dataset, indicator, len(selected_indexes)))
standard_scores = []
random_scores = []
for idx in selected_indexes:
standard_scores.append(
api.get_more_info(idx, dataset, hp=api.full_train_epochs if indicator == 'more' else '12', is_random=False)['test-accuracy'])
random_scores.append(
api.get_more_info(idx, dataset, hp=api.full_train_epochs if indicator == 'more' else '12', is_random=True)['test-accuracy'])
indexes = list(range(len(selected_indexes)))
standard_indexes = sorted(indexes, key=lambda i: standard_scores[i])
random_indexes = sorted(indexes, key=lambda i: random_scores[i])
random_labels = []
for idx in standard_indexes:
random_labels.append(random_indexes.index(idx))
for tick in ax.get_xticklabels():
tick.set_fontsize(LabelSize - 3)
for tick in ax.get_yticklabels():
tick.set_rotation(25)
tick.set_fontsize(LabelSize - 3)
ax.set_xlim(0, len(indexes))
ax.set_ylim(0, len(indexes))
ax.set_yticks(np.arange(min(indexes), max(indexes), max(indexes)//3))
ax.set_xticks(np.arange(min(indexes), max(indexes), max(indexes)//5))
ax.scatter(indexes, random_labels, marker='^', s=0.5, c='tab:green', alpha=0.8)
ax.scatter(indexes, indexes , marker='o', s=0.5, c='tab:blue' , alpha=0.8)
ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='Average Over Multi-Trials')
ax.scatter([-1], [-1], marker='^', s=100, c='tab:green', label='Randomly Selected Trial')
2020-12-01 15:25:23 +01:00
coef, p = scipy.stats.kendalltau(standard_scores, random_scores)
ax.set_xlabel('architecture ranking in {:}'.format(name2label[dataset]), fontsize=LabelSize)
if dataset == 'cifar10':
ax.set_ylabel('architecture ranking', fontsize=LabelSize)
ax.legend(loc=4, fontsize=LegendFontsize)
return coef
2020-12-01 15:25:23 +01:00
for dataset, ax in zip(datasets, axs):
rank_coef = sub_plot_fn(ax, dataset, indicator)
print('sub-plot {:} on {:} done, the ranking coefficient is {:.4f}.'.format(dataset, search_space, rank_coef))
2020-12-01 15:25:23 +01:00
save_path = (vis_save_dir / '{:}-rank-{:}-top{:}.pdf'.format(search_space, indicator, topk)).resolve()
2020-12-01 15:25:23 +01:00
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf')
save_path = (vis_save_dir / '{:}-rank-{:}-top{:}.png'.format(search_space, indicator, topk)).resolve()
2020-12-01 15:25:23 +01:00
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
print('Save into {:}'.format(save_path))
2020-12-01 15:25:23 +01:00
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='NATS-Bench', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--save_dir', type=str, default='output/vis-nas-bench/rank-stability', help='Folder to save checkpoints and log.')
args = parser.parse_args()
to_save_dir = Path(args.save_dir)
for topk in [1, 5, 10, 20]:
visualize_relative_info(to_save_dir, 'tss', 'more', topk)
visualize_relative_info(to_save_dir, 'sss', 'less', topk)
print ('{:} : complete running this file : {:}'.format(time_string(), __file__))