| 
									
										
										
										
											2020-08-18 06:29:30 +00:00
										 |  |  | ############################################################################## | 
					
						
							| 
									
										
										
										
											2021-01-25 21:48:14 +08:00
										 |  |  | # NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size # | 
					
						
							| 
									
										
										
										
											2020-08-18 06:29:30 +00:00
										 |  |  | ############################################################################## | 
					
						
							|  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07                          # | 
					
						
							|  |  |  | ############################################################################## | 
					
						
							| 
									
										
										
										
											2020-08-28 06:02:35 +00:00
										 |  |  | # This file is used to train (all) architecture candidate in the size search # | 
					
						
							|  |  |  | # space in NATS-Bench (sss) with different hyper-parameters.                 # | 
					
						
							|  |  |  | # When use mode=new, it will automatically detect whether the checkpoint of  # | 
					
						
							|  |  |  | # a trial exists, if so, it will skip this trial. When use mode=cover, it    # | 
					
						
							|  |  |  | # will ignore the (possible) existing checkpoint, run each trial, and save.  # | 
					
						
							|  |  |  | # (NOTE): the topology for all candidates in sss is fixed as:                ###################### | 
					
						
							|  |  |  | # |nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2| # | 
					
						
							|  |  |  | ################################################################################################### | 
					
						
							|  |  |  | # Please use the script of scripts/NATS-Bench/train-shapes.sh to run.        # | 
					
						
							|  |  |  | ############################################################################## | 
					
						
							| 
									
										
										
										
											2020-03-09 19:38:00 +11:00
										 |  |  | import os, sys, time, torch, argparse | 
					
						
							|  |  |  | from typing import List, Text, Dict, Any | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from PIL import ImageFile | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-03-09 19:38:00 +11:00
										 |  |  | ImageFile.LOAD_TRUNCATED_IMAGES = True | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from copy import deepcopy | 
					
						
							| 
									
										
										
										
											2020-03-09 19:38:00 +11:00
										 |  |  | from pathlib import Path | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | 
					
						
							|  |  |  | if str(lib_dir) not in sys.path: | 
					
						
							|  |  |  |     sys.path.insert(0, str(lib_dir)) | 
					
						
							| 
									
										
										
										
											2020-03-09 19:38:00 +11:00
										 |  |  | from config_utils import dict2config, load_config | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from procedures import bench_evaluate_for_seed | 
					
						
							|  |  |  | from procedures import get_machine_info | 
					
						
							|  |  |  | from datasets import get_datasets | 
					
						
							|  |  |  | from log_utils import Logger, AverageMeter, time_string, convert_secs2time | 
					
						
							|  |  |  | from utils import split_str2indexes | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def evaluate_all_datasets( | 
					
						
							|  |  |  |     channels: Text, | 
					
						
							|  |  |  |     datasets: List[Text], | 
					
						
							|  |  |  |     xpaths: List[Text], | 
					
						
							|  |  |  |     splits: List[Text], | 
					
						
							|  |  |  |     config_path: Text, | 
					
						
							|  |  |  |     seed: int, | 
					
						
							|  |  |  |     workers: int, | 
					
						
							|  |  |  |     logger, | 
					
						
							|  |  |  | ): | 
					
						
							|  |  |  |     machine_info = get_machine_info() | 
					
						
							|  |  |  |     all_infos = {"info": machine_info} | 
					
						
							|  |  |  |     all_dataset_keys = [] | 
					
						
							|  |  |  |     # look all the dataset | 
					
						
							|  |  |  |     for dataset, xpath, split in zip(datasets, xpaths, splits): | 
					
						
							|  |  |  |         # the train and valid data | 
					
						
							|  |  |  |         train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | 
					
						
							|  |  |  |         # load the configuration | 
					
						
							|  |  |  |         if dataset == "cifar10" or dataset == "cifar100": | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             split_info = load_config( | 
					
						
							|  |  |  |                 "configs/nas-benchmark/cifar-split.txt", None, None | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         elif dataset.startswith("ImageNet16"): | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             split_info = load_config( | 
					
						
							|  |  |  |                 "configs/nas-benchmark/{:}-split.txt".format(dataset), None, None | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("invalid dataset : {:}".format(dataset)) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         config = load_config( | 
					
						
							|  |  |  |             config_path, dict(class_num=class_num, xshape=xshape), logger | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         # check whether use the splitted validation set | 
					
						
							|  |  |  |         if bool(split): | 
					
						
							|  |  |  |             assert dataset == "cifar10" | 
					
						
							|  |  |  |             ValLoaders = { | 
					
						
							|  |  |  |                 "ori-test": torch.utils.data.DataLoader( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                     valid_data, | 
					
						
							|  |  |  |                     batch_size=config.batch_size, | 
					
						
							|  |  |  |                     shuffle=False, | 
					
						
							|  |  |  |                     num_workers=workers, | 
					
						
							|  |  |  |                     pin_memory=True, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 ) | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             assert len(train_data) == len(split_info.train) + len( | 
					
						
							|  |  |  |                 split_info.valid | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             ), "invalid length : {:} vs {:} + {:}".format( | 
					
						
							|  |  |  |                 len(train_data), len(split_info.train), len(split_info.valid) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             train_data_v2 = deepcopy(train_data) | 
					
						
							|  |  |  |             train_data_v2.transform = valid_data.transform | 
					
						
							|  |  |  |             valid_data = train_data_v2 | 
					
						
							|  |  |  |             # data loader | 
					
						
							|  |  |  |             train_loader = torch.utils.data.DataLoader( | 
					
						
							|  |  |  |                 train_data, | 
					
						
							|  |  |  |                 batch_size=config.batch_size, | 
					
						
							|  |  |  |                 sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), | 
					
						
							|  |  |  |                 num_workers=workers, | 
					
						
							|  |  |  |                 pin_memory=True, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             valid_loader = torch.utils.data.DataLoader( | 
					
						
							|  |  |  |                 valid_data, | 
					
						
							|  |  |  |                 batch_size=config.batch_size, | 
					
						
							|  |  |  |                 sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), | 
					
						
							|  |  |  |                 num_workers=workers, | 
					
						
							|  |  |  |                 pin_memory=True, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             ValLoaders["x-valid"] = valid_loader | 
					
						
							| 
									
										
										
										
											2020-03-09 19:38:00 +11:00
										 |  |  |         else: | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             # data loader | 
					
						
							|  |  |  |             train_loader = torch.utils.data.DataLoader( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 train_data, | 
					
						
							|  |  |  |                 batch_size=config.batch_size, | 
					
						
							|  |  |  |                 shuffle=True, | 
					
						
							|  |  |  |                 num_workers=workers, | 
					
						
							|  |  |  |                 pin_memory=True, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |             valid_loader = torch.utils.data.DataLoader( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 valid_data, | 
					
						
							|  |  |  |                 batch_size=config.batch_size, | 
					
						
							|  |  |  |                 shuffle=False, | 
					
						
							|  |  |  |                 num_workers=workers, | 
					
						
							|  |  |  |                 pin_memory=True, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |             if dataset == "cifar10": | 
					
						
							|  |  |  |                 ValLoaders = {"ori-test": valid_loader} | 
					
						
							|  |  |  |             elif dataset == "cifar100": | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 cifar100_splits = load_config( | 
					
						
							|  |  |  |                     "configs/nas-benchmark/cifar100-test-split.txt", None, None | 
					
						
							|  |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 ValLoaders = { | 
					
						
							|  |  |  |                     "ori-test": valid_loader, | 
					
						
							|  |  |  |                     "x-valid": torch.utils.data.DataLoader( | 
					
						
							|  |  |  |                         valid_data, | 
					
						
							|  |  |  |                         batch_size=config.batch_size, | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | 
					
						
							|  |  |  |                             cifar100_splits.xvalid | 
					
						
							|  |  |  |                         ), | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                         num_workers=workers, | 
					
						
							|  |  |  |                         pin_memory=True, | 
					
						
							|  |  |  |                     ), | 
					
						
							|  |  |  |                     "x-test": torch.utils.data.DataLoader( | 
					
						
							|  |  |  |                         valid_data, | 
					
						
							|  |  |  |                         batch_size=config.batch_size, | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | 
					
						
							|  |  |  |                             cifar100_splits.xtest | 
					
						
							|  |  |  |                         ), | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                         num_workers=workers, | 
					
						
							|  |  |  |                         pin_memory=True, | 
					
						
							|  |  |  |                     ), | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             elif dataset == "ImageNet16-120": | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 imagenet16_splits = load_config( | 
					
						
							|  |  |  |                     "configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None | 
					
						
							|  |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 ValLoaders = { | 
					
						
							|  |  |  |                     "ori-test": valid_loader, | 
					
						
							|  |  |  |                     "x-valid": torch.utils.data.DataLoader( | 
					
						
							|  |  |  |                         valid_data, | 
					
						
							|  |  |  |                         batch_size=config.batch_size, | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | 
					
						
							|  |  |  |                             imagenet16_splits.xvalid | 
					
						
							|  |  |  |                         ), | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                         num_workers=workers, | 
					
						
							|  |  |  |                         pin_memory=True, | 
					
						
							|  |  |  |                     ), | 
					
						
							|  |  |  |                     "x-test": torch.utils.data.DataLoader( | 
					
						
							|  |  |  |                         valid_data, | 
					
						
							|  |  |  |                         batch_size=config.batch_size, | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                         sampler=torch.utils.data.sampler.SubsetRandomSampler( | 
					
						
							|  |  |  |                             imagenet16_splits.xtest | 
					
						
							|  |  |  |                         ), | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                         num_workers=workers, | 
					
						
							|  |  |  |                         pin_memory=True, | 
					
						
							|  |  |  |                     ), | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 raise ValueError("invalid dataset : {:}".format(dataset)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         dataset_key = "{:}".format(dataset) | 
					
						
							|  |  |  |         if bool(split): | 
					
						
							|  |  |  |             dataset_key = dataset_key + "-valid" | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 dataset_key, | 
					
						
							|  |  |  |                 len(train_data), | 
					
						
							|  |  |  |                 len(valid_data), | 
					
						
							|  |  |  |                 len(train_loader), | 
					
						
							|  |  |  |                 len(valid_loader), | 
					
						
							|  |  |  |                 config.batch_size, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         for key, value in ValLoaders.items(): | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             logger.log( | 
					
						
							|  |  |  |                 "Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value)) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         # arch-index= 9930, arch=|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2| | 
					
						
							|  |  |  |         # this genotype is the architecture with the highest accuracy on CIFAR-100 validation set | 
					
						
							|  |  |  |         genotype = "|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|" | 
					
						
							|  |  |  |         arch_config = dict2config( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             dict( | 
					
						
							|  |  |  |                 name="infer.shape.tiny", | 
					
						
							|  |  |  |                 channels=channels, | 
					
						
							|  |  |  |                 genotype=genotype, | 
					
						
							|  |  |  |                 num_classes=class_num, | 
					
						
							|  |  |  |             ), | 
					
						
							|  |  |  |             None, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         results = bench_evaluate_for_seed( | 
					
						
							|  |  |  |             arch_config, config, train_loader, ValLoaders, seed, logger | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ) | 
					
						
							|  |  |  |         all_infos[dataset_key] = results | 
					
						
							|  |  |  |         all_dataset_keys.append(dataset_key) | 
					
						
							|  |  |  |     all_infos["all_dataset_keys"] = all_dataset_keys | 
					
						
							|  |  |  |     return all_infos | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def main( | 
					
						
							|  |  |  |     save_dir: Path, | 
					
						
							|  |  |  |     workers: int, | 
					
						
							|  |  |  |     datasets: List[Text], | 
					
						
							|  |  |  |     xpaths: List[Text], | 
					
						
							|  |  |  |     splits: List[int], | 
					
						
							|  |  |  |     seeds: List[int], | 
					
						
							|  |  |  |     nets: List[str], | 
					
						
							|  |  |  |     opt_config: Dict[Text, Any], | 
					
						
							|  |  |  |     to_evaluate_indexes: tuple, | 
					
						
							|  |  |  |     cover_mode: bool, | 
					
						
							|  |  |  | ): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     log_dir = save_dir / "logs" | 
					
						
							|  |  |  |     log_dir.mkdir(parents=True, exist_ok=True) | 
					
						
							|  |  |  |     logger = Logger(str(log_dir), os.getpid(), False) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     logger.log("xargs : seeds      = {:}".format(seeds)) | 
					
						
							|  |  |  |     logger.log("xargs : cover_mode = {:}".format(cover_mode)) | 
					
						
							|  |  |  |     logger.log("-" * 100) | 
					
						
							|  |  |  |     logger.log( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "Start evaluating range =: {:06d} - {:06d}".format( | 
					
						
							|  |  |  |             min(to_evaluate_indexes), max(to_evaluate_indexes) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         + "({:} in total) / {:06d} with cover-mode={:}".format( | 
					
						
							|  |  |  |             len(to_evaluate_indexes), len(nets), cover_mode | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}".format( | 
					
						
							|  |  |  |                 i, len(datasets), dataset, xpath, split | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     logger.log("--->>> optimization config : {:}".format(opt_config)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     start_time, epoch_time = time.time(), AverageMeter() | 
					
						
							|  |  |  |     for i, index in enumerate(to_evaluate_indexes): | 
					
						
							|  |  |  |         channelstr = nets[index] | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] {:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 time_string(), | 
					
						
							|  |  |  |                 i, | 
					
						
							|  |  |  |                 len(to_evaluate_indexes), | 
					
						
							|  |  |  |                 index, | 
					
						
							|  |  |  |                 len(nets), | 
					
						
							|  |  |  |                 seeds, | 
					
						
							|  |  |  |                 "-" * 15, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         logger.log("{:} {:} {:}".format("-" * 15, channelstr, "-" * 15)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # test this arch on different datasets with different seeds | 
					
						
							|  |  |  |         has_continue = False | 
					
						
							|  |  |  |         for seed in seeds: | 
					
						
							|  |  |  |             to_save_name = save_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) | 
					
						
							|  |  |  |             if to_save_name.exists(): | 
					
						
							|  |  |  |                 if cover_mode: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                     logger.log( | 
					
						
							|  |  |  |                         "Find existing file : {:}, remove it before evaluation".format( | 
					
						
							|  |  |  |                             to_save_name | 
					
						
							|  |  |  |                         ) | 
					
						
							|  |  |  |                     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                     os.remove(str(to_save_name)) | 
					
						
							|  |  |  |                 else: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                     logger.log( | 
					
						
							|  |  |  |                         "Find existing file : {:}, skip this evaluation".format( | 
					
						
							|  |  |  |                             to_save_name | 
					
						
							|  |  |  |                         ) | 
					
						
							|  |  |  |                     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                     has_continue = True | 
					
						
							|  |  |  |                     continue | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             results = evaluate_all_datasets( | 
					
						
							|  |  |  |                 channelstr, datasets, xpaths, splits, opt_config, seed, workers, logger | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             torch.save(results, to_save_name) | 
					
						
							|  |  |  |             logger.log( | 
					
						
							|  |  |  |                 "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] ===>>> {:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                     time_string(), | 
					
						
							|  |  |  |                     i, | 
					
						
							|  |  |  |                     len(to_evaluate_indexes), | 
					
						
							|  |  |  |                     index, | 
					
						
							|  |  |  |                     len(nets), | 
					
						
							|  |  |  |                     seeds, | 
					
						
							|  |  |  |                     to_save_name, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 ) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         # measure elapsed time | 
					
						
							|  |  |  |         if not has_continue: | 
					
						
							|  |  |  |             epoch_time.update(time.time() - start_time) | 
					
						
							|  |  |  |         start_time = time.time() | 
					
						
							|  |  |  |         need_time = "Time Left: {:}".format( | 
					
						
							|  |  |  |             convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         logger.log( | 
					
						
							|  |  |  |             "This arch costs : {:}".format(convert_secs2time(epoch_time.val, True)) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         logger.log("{:}".format("*" * 100)) | 
					
						
							|  |  |  |         logger.log( | 
					
						
							|  |  |  |             "{:}   {:74s}   {:}".format( | 
					
						
							|  |  |  |                 "*" * 10, | 
					
						
							|  |  |  |                 "{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format( | 
					
						
							|  |  |  |                     i, len(to_evaluate_indexes), index, len(nets), need_time | 
					
						
							|  |  |  |                 ), | 
					
						
							|  |  |  |                 "*" * 10, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         logger.log("{:}".format("*" * 100)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     logger.close() | 
					
						
							| 
									
										
										
										
											2020-03-09 19:38:00 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def traverse_net(candidates: List[int], N: int): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     nets = [""] | 
					
						
							|  |  |  |     for i in range(N): | 
					
						
							|  |  |  |         new_nets = [] | 
					
						
							|  |  |  |         for net in nets: | 
					
						
							|  |  |  |             for C in candidates: | 
					
						
							|  |  |  |                 new_nets.append(str(C) if net == "" else "{:}:{:}".format(net, C)) | 
					
						
							|  |  |  |         nets = new_nets | 
					
						
							|  |  |  |     return nets | 
					
						
							| 
									
										
										
										
											2020-03-09 19:38:00 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-03-20 23:38:47 -07:00
										 |  |  | def filter_indexes(xlist, mode, save_dir, seeds): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     all_indexes = [] | 
					
						
							|  |  |  |     for index in xlist: | 
					
						
							|  |  |  |         if mode == "cover": | 
					
						
							|  |  |  |             all_indexes.append(index) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             for seed in seeds: | 
					
						
							|  |  |  |                 temp_path = save_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed) | 
					
						
							|  |  |  |                 if not temp_path.exists(): | 
					
						
							|  |  |  |                     all_indexes.append(index) | 
					
						
							|  |  |  |                     break | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "{:} [FILTER-INDEXES] : there are {:}/{:} architectures in total".format( | 
					
						
							|  |  |  |             time_string(), len(all_indexes), len(xlist) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     SLURM_PROCID, SLURM_NTASKS = "SLURM_PROCID", "SLURM_NTASKS" | 
					
						
							|  |  |  |     if SLURM_PROCID in os.environ and SLURM_NTASKS in os.environ:  # run on the slurm | 
					
						
							|  |  |  |         proc_id, ntasks = int(os.environ[SLURM_PROCID]), int(os.environ[SLURM_NTASKS]) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         assert 0 <= proc_id < ntasks, "invalid proc_id {:} vs ntasks {:}".format( | 
					
						
							|  |  |  |             proc_id, ntasks | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         scales = [int(float(i) / ntasks * len(all_indexes)) for i in range(ntasks)] + [ | 
					
						
							|  |  |  |             len(all_indexes) | 
					
						
							|  |  |  |         ] | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         per_job = [] | 
					
						
							|  |  |  |         for i in range(ntasks): | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             xs, xe = min(max(scales[i], 0), len(all_indexes) - 1), min( | 
					
						
							|  |  |  |                 max(scales[i + 1] - 1, 0), len(all_indexes) - 1 | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             per_job.append((xs, xe)) | 
					
						
							|  |  |  |         for i, srange in enumerate(per_job): | 
					
						
							|  |  |  |             print("  -->> {:2d}/{:02d} : {:}".format(i, ntasks, srange)) | 
					
						
							|  |  |  |         current_range = per_job[proc_id] | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         all_indexes = [ | 
					
						
							|  |  |  |             all_indexes[i] for i in range(current_range[0], current_range[1] + 1) | 
					
						
							|  |  |  |         ] | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         # set the device id | 
					
						
							|  |  |  |         device = proc_id % torch.cuda.device_count() | 
					
						
							|  |  |  |         torch.cuda.set_device(device) | 
					
						
							|  |  |  |         print("  set the device id = {:}".format(device)) | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "{:} [FILTER-INDEXES] : after filtering there are {:} architectures in total".format( | 
					
						
							|  |  |  |             time_string(), len(all_indexes) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     return all_indexes | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         description="NATS-Bench (size search space)", | 
					
						
							|  |  |  |         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--mode", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         required=True, | 
					
						
							|  |  |  |         choices=["new", "cover"], | 
					
						
							|  |  |  |         help="The script mode.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--save_dir", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default="output/NATS-Bench-size", | 
					
						
							|  |  |  |         help="Folder to save checkpoints and log.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--candidateC", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         nargs="+", | 
					
						
							|  |  |  |         default=[8, 16, 24, 32, 40, 48, 56, 64], | 
					
						
							|  |  |  |         help=".", | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "--num_layers", type=int, default=5, help="The number of layers in a network." | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument("--check_N", type=int, default=32768, help="For safety.") | 
					
						
							|  |  |  |     # use for train the model | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--workers", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=8, | 
					
						
							|  |  |  |         help="The number of data loading workers (default: 2)", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--srange", type=str, required=True, help="The range of models to be evaluated" | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.") | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "--xpaths", type=str, nargs="+", help="The root path for this dataset." | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--splits", type=int, nargs="+", help="The root path for this dataset." | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--hyper", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default="12", | 
					
						
							|  |  |  |         choices=["01", "12", "90"], | 
					
						
							|  |  |  |         help="The tag for hyper-parameters.", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--seeds", type=int, nargs="+", help="The range of models to be evaluated" | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     args = parser.parse_args() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     nets = traverse_net(args.candidateC, args.num_layers) | 
					
						
							|  |  |  |     if len(nets) != args.check_N: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         raise ValueError( | 
					
						
							|  |  |  |             "Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     opt_config = "./configs/nas-benchmark/hyper-opts/{:}E.config".format(args.hyper) | 
					
						
							|  |  |  |     if not os.path.isfile(opt_config): | 
					
						
							|  |  |  |         raise ValueError("{:} is not a file.".format(opt_config)) | 
					
						
							|  |  |  |     save_dir = Path(args.save_dir) / "raw-data-{:}".format(args.hyper) | 
					
						
							|  |  |  |     save_dir.mkdir(parents=True, exist_ok=True) | 
					
						
							|  |  |  |     to_evaluate_indexes = split_str2indexes(args.srange, args.check_N, 5) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if not len(args.seeds): | 
					
						
							|  |  |  |         raise ValueError("invalid length of seeds args: {:}".format(args.seeds)) | 
					
						
							|  |  |  |     if not (len(args.datasets) == len(args.xpaths) == len(args.splits)): | 
					
						
							|  |  |  |         raise ValueError( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             "invalid infos : {:} vs {:} vs {:}".format( | 
					
						
							|  |  |  |                 len(args.datasets), len(args.xpaths), len(args.splits) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ) | 
					
						
							|  |  |  |     if args.workers <= 0: | 
					
						
							|  |  |  |         raise ValueError("invalid number of workers : {:}".format(args.workers)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     target_indexes = filter_indexes( | 
					
						
							|  |  |  |         to_evaluate_indexes, args.mode, save_dir, args.seeds | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     assert torch.cuda.is_available(), "CUDA is not available." | 
					
						
							|  |  |  |     torch.backends.cudnn.enabled = True | 
					
						
							|  |  |  |     torch.backends.cudnn.deterministic = True | 
					
						
							|  |  |  |     torch.set_num_threads(args.workers) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     main( | 
					
						
							|  |  |  |         save_dir, | 
					
						
							|  |  |  |         args.workers, | 
					
						
							|  |  |  |         args.datasets, | 
					
						
							|  |  |  |         args.xpaths, | 
					
						
							|  |  |  |         args.splits, | 
					
						
							|  |  |  |         tuple(args.seeds), | 
					
						
							|  |  |  |         nets, | 
					
						
							|  |  |  |         opt_config, | 
					
						
							|  |  |  |         target_indexes, | 
					
						
							|  |  |  |         args.mode == "cover", | 
					
						
							|  |  |  |     ) |