| 
									
										
										
										
											2020-08-28 06:02:35 +00:00
										 |  |  | ############################################################################## | 
					
						
							| 
									
										
										
										
											2021-01-25 21:48:14 +08:00
										 |  |  | # NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size # | 
					
						
							| 
									
										
										
										
											2020-08-28 06:02:35 +00:00
										 |  |  | ############################################################################## | 
					
						
							| 
									
										
										
										
											2020-09-05 10:40:29 +00:00
										 |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08                          # | 
					
						
							| 
									
										
										
										
											2020-08-28 06:02:35 +00:00
										 |  |  | ############################################################################## | 
					
						
							|  |  |  | # This file is used to re-orangize all checkpoints (created by main-sss.py)  # | 
					
						
							|  |  |  | # into a single benchmark file. Besides, for each trial, we will merge the   # | 
					
						
							|  |  |  | # information of all its trials into a single file.                          # | 
					
						
							|  |  |  | #                                                                            # | 
					
						
							|  |  |  | # Usage:                                                                     # | 
					
						
							|  |  |  | # python exps/NATS-Bench/sss-collect.py                                      # | 
					
						
							|  |  |  | ############################################################################## | 
					
						
							| 
									
										
										
										
											2020-08-28 10:21:33 +00:00
										 |  |  | import os, re, sys, time, shutil, argparse, collections | 
					
						
							| 
									
										
										
										
											2020-06-30 09:05:38 +00:00
										 |  |  | import torch | 
					
						
							|  |  |  | from tqdm import tqdm | 
					
						
							|  |  |  | from pathlib import Path | 
					
						
							|  |  |  | from collections import defaultdict, OrderedDict | 
					
						
							|  |  |  | from typing import Dict, Any, Text, List | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | 
					
						
							|  |  |  | if str(lib_dir) not in sys.path: | 
					
						
							|  |  |  |     sys.path.insert(0, str(lib_dir)) | 
					
						
							|  |  |  | from log_utils import AverageMeter, time_string, convert_secs2time | 
					
						
							| 
									
										
										
										
											2020-06-30 09:05:38 +00:00
										 |  |  | from config_utils import dict2config | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | from models import CellStructure, get_cell_based_tiny_net | 
					
						
							|  |  |  | from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount | 
					
						
							|  |  |  | from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders | 
					
						
							|  |  |  | from utils import get_md5_file | 
					
						
							| 
									
										
										
										
											2020-06-30 09:05:38 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-09-05 10:40:29 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | NATS_SSS_BASE_NAME = "NATS-sss-v1_0"  # 2020.08.28 | 
					
						
							| 
									
										
										
										
											2020-08-28 10:21:33 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-06-30 09:05:38 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  | def account_one_arch( | 
					
						
							|  |  |  |     arch_index: int, arch_str: Text, checkpoints: List[Text], datasets: List[Text] | 
					
						
							|  |  |  | ) -> ArchResults: | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     information = ArchResults(arch_index, arch_str) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for checkpoint_path in checkpoints: | 
					
						
							|  |  |  |         try: | 
					
						
							|  |  |  |             checkpoint = torch.load(checkpoint_path, map_location="cpu") | 
					
						
							|  |  |  |         except: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             raise ValueError( | 
					
						
							|  |  |  |                 "This checkpoint failed to be loaded : {:}".format(checkpoint_path) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         used_seed = checkpoint_path.name.split("-")[-1].split(".")[0] | 
					
						
							|  |  |  |         ok_dataset = 0 | 
					
						
							|  |  |  |         for dataset in datasets: | 
					
						
							|  |  |  |             if dataset not in checkpoint: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 print( | 
					
						
							|  |  |  |                     "Can not find {:} in arch-{:} from {:}".format( | 
					
						
							|  |  |  |                         dataset, arch_index, checkpoint_path | 
					
						
							|  |  |  |                     ) | 
					
						
							|  |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 continue | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 ok_dataset += 1 | 
					
						
							|  |  |  |             results = checkpoint[dataset] | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             assert results[ | 
					
						
							|  |  |  |                 "finish-train" | 
					
						
							|  |  |  |             ], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format( | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 arch_index, used_seed, dataset, checkpoint_path | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             arch_config = { | 
					
						
							|  |  |  |                 "name": "infer.shape.tiny", | 
					
						
							|  |  |  |                 "channels": arch_str, | 
					
						
							|  |  |  |                 "arch_str": arch_str, | 
					
						
							|  |  |  |                 "genotype": results["arch_config"]["genotype"], | 
					
						
							|  |  |  |                 "class_num": results["arch_config"]["num_classes"], | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             xresult = ResultsCount( | 
					
						
							|  |  |  |                 dataset, | 
					
						
							|  |  |  |                 results["net_state_dict"], | 
					
						
							|  |  |  |                 results["train_acc1es"], | 
					
						
							|  |  |  |                 results["train_losses"], | 
					
						
							|  |  |  |                 results["param"], | 
					
						
							|  |  |  |                 results["flop"], | 
					
						
							|  |  |  |                 arch_config, | 
					
						
							|  |  |  |                 used_seed, | 
					
						
							|  |  |  |                 results["total_epoch"], | 
					
						
							|  |  |  |                 None, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             xresult.update_train_info( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 results["train_acc1es"], | 
					
						
							|  |  |  |                 results["train_acc5es"], | 
					
						
							|  |  |  |                 results["train_losses"], | 
					
						
							|  |  |  |                 results["train_times"], | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             xresult.update_eval( | 
					
						
							|  |  |  |                 results["valid_acc1es"], results["valid_losses"], results["valid_times"] | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |             information.update(dataset, int(used_seed), xresult) | 
					
						
							|  |  |  |         if ok_dataset < len(datasets): | 
					
						
							|  |  |  |             raise ValueError( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 "{:} does find enought data : {:} vs {:}".format( | 
					
						
							|  |  |  |                     checkpoint_path, ok_dataset, len(datasets) | 
					
						
							|  |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |     return information | 
					
						
							| 
									
										
										
										
											2020-06-30 09:05:38 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def correct_time_related_info(hp2info: Dict[Text, ArchResults]): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     # calibrate the latency based on the number of epochs = 01, since they are trained on the same machine. | 
					
						
							|  |  |  |     x1 = hp2info["01"].get_metrics("cifar10-valid", "x-valid")["all_time"] / 98 | 
					
						
							|  |  |  |     x2 = hp2info["01"].get_metrics("cifar10-valid", "ori-test")["all_time"] / 40 | 
					
						
							|  |  |  |     cifar010_latency = (x1 + x2) / 2 | 
					
						
							|  |  |  |     for hp, arch_info in hp2info.items(): | 
					
						
							|  |  |  |         arch_info.reset_latency("cifar10-valid", None, cifar010_latency) | 
					
						
							|  |  |  |         arch_info.reset_latency("cifar10", None, cifar010_latency) | 
					
						
							|  |  |  |     # hp2info['01'].get_latency('cifar10') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     x1 = hp2info["01"].get_metrics("cifar100", "ori-test")["all_time"] / 40 | 
					
						
							|  |  |  |     x2 = hp2info["01"].get_metrics("cifar100", "x-test")["all_time"] / 20 | 
					
						
							|  |  |  |     x3 = hp2info["01"].get_metrics("cifar100", "x-valid")["all_time"] / 20 | 
					
						
							|  |  |  |     cifar100_latency = (x1 + x2 + x3) / 3 | 
					
						
							|  |  |  |     for hp, arch_info in hp2info.items(): | 
					
						
							|  |  |  |         arch_info.reset_latency("cifar100", None, cifar100_latency) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     x1 = hp2info["01"].get_metrics("ImageNet16-120", "ori-test")["all_time"] / 24 | 
					
						
							|  |  |  |     x2 = hp2info["01"].get_metrics("ImageNet16-120", "x-test")["all_time"] / 12 | 
					
						
							|  |  |  |     x3 = hp2info["01"].get_metrics("ImageNet16-120", "x-valid")["all_time"] / 12 | 
					
						
							|  |  |  |     image_latency = (x1 + x2 + x3) / 3 | 
					
						
							|  |  |  |     for hp, arch_info in hp2info.items(): | 
					
						
							|  |  |  |         arch_info.reset_latency("ImageNet16-120", None, image_latency) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # CIFAR10 VALID | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     train_per_epoch_time = list( | 
					
						
							|  |  |  |         hp2info["01"].query("cifar10-valid", 777).train_times.values() | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | 
					
						
							|  |  |  |     eval_ori_test_time, eval_x_valid_time = [], [] | 
					
						
							|  |  |  |     for key, value in hp2info["01"].query("cifar10-valid", 777).eval_times.items(): | 
					
						
							|  |  |  |         if key.startswith("ori-test@"): | 
					
						
							|  |  |  |             eval_ori_test_time.append(value) | 
					
						
							|  |  |  |         elif key.startswith("x-valid@"): | 
					
						
							|  |  |  |             eval_x_valid_time.append(value) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("-- {:} --".format(key)) | 
					
						
							|  |  |  |     eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | 
					
						
							|  |  |  |     eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time) | 
					
						
							|  |  |  |     for hp, arch_info in hp2info.items(): | 
					
						
							|  |  |  |         arch_info.reset_pseudo_train_times("cifar10-valid", None, train_per_epoch_time) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         arch_info.reset_pseudo_eval_times( | 
					
						
							|  |  |  |             "cifar10-valid", None, "x-valid", eval_x_valid_time | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         arch_info.reset_pseudo_eval_times( | 
					
						
							|  |  |  |             "cifar10-valid", None, "ori-test", eval_ori_test_time | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # CIFAR10 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     train_per_epoch_time = list( | 
					
						
							|  |  |  |         hp2info["01"].query("cifar10", 777).train_times.values() | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | 
					
						
							|  |  |  |     eval_ori_test_time = [] | 
					
						
							|  |  |  |     for key, value in hp2info["01"].query("cifar10", 777).eval_times.items(): | 
					
						
							|  |  |  |         if key.startswith("ori-test@"): | 
					
						
							|  |  |  |             eval_ori_test_time.append(value) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("-- {:} --".format(key)) | 
					
						
							|  |  |  |     eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | 
					
						
							|  |  |  |     for hp, arch_info in hp2info.items(): | 
					
						
							|  |  |  |         arch_info.reset_pseudo_train_times("cifar10", None, train_per_epoch_time) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         arch_info.reset_pseudo_eval_times( | 
					
						
							|  |  |  |             "cifar10", None, "ori-test", eval_ori_test_time | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # CIFAR100 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     train_per_epoch_time = list( | 
					
						
							|  |  |  |         hp2info["01"].query("cifar100", 777).train_times.values() | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | 
					
						
							|  |  |  |     eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], [] | 
					
						
							|  |  |  |     for key, value in hp2info["01"].query("cifar100", 777).eval_times.items(): | 
					
						
							|  |  |  |         if key.startswith("ori-test@"): | 
					
						
							|  |  |  |             eval_ori_test_time.append(value) | 
					
						
							|  |  |  |         elif key.startswith("x-valid@"): | 
					
						
							|  |  |  |             eval_x_valid_time.append(value) | 
					
						
							|  |  |  |         elif key.startswith("x-test@"): | 
					
						
							|  |  |  |             eval_x_test_time.append(value) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("-- {:} --".format(key)) | 
					
						
							|  |  |  |     eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | 
					
						
							|  |  |  |     eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time) | 
					
						
							|  |  |  |     eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time) | 
					
						
							|  |  |  |     for hp, arch_info in hp2info.items(): | 
					
						
							|  |  |  |         arch_info.reset_pseudo_train_times("cifar100", None, train_per_epoch_time) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         arch_info.reset_pseudo_eval_times( | 
					
						
							|  |  |  |             "cifar100", None, "x-valid", eval_x_valid_time | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         arch_info.reset_pseudo_eval_times("cifar100", None, "x-test", eval_x_test_time) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         arch_info.reset_pseudo_eval_times( | 
					
						
							|  |  |  |             "cifar100", None, "ori-test", eval_ori_test_time | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # ImageNet16-120 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     train_per_epoch_time = list( | 
					
						
							|  |  |  |         hp2info["01"].query("ImageNet16-120", 777).train_times.values() | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | 
					
						
							|  |  |  |     eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], [] | 
					
						
							|  |  |  |     for key, value in hp2info["01"].query("ImageNet16-120", 777).eval_times.items(): | 
					
						
							|  |  |  |         if key.startswith("ori-test@"): | 
					
						
							|  |  |  |             eval_ori_test_time.append(value) | 
					
						
							|  |  |  |         elif key.startswith("x-valid@"): | 
					
						
							|  |  |  |             eval_x_valid_time.append(value) | 
					
						
							|  |  |  |         elif key.startswith("x-test@"): | 
					
						
							|  |  |  |             eval_x_test_time.append(value) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("-- {:} --".format(key)) | 
					
						
							|  |  |  |     eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | 
					
						
							|  |  |  |     eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time) | 
					
						
							|  |  |  |     eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time) | 
					
						
							|  |  |  |     for hp, arch_info in hp2info.items(): | 
					
						
							|  |  |  |         arch_info.reset_pseudo_train_times("ImageNet16-120", None, train_per_epoch_time) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         arch_info.reset_pseudo_eval_times( | 
					
						
							|  |  |  |             "ImageNet16-120", None, "x-valid", eval_x_valid_time | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         arch_info.reset_pseudo_eval_times( | 
					
						
							|  |  |  |             "ImageNet16-120", None, "x-test", eval_x_test_time | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         arch_info.reset_pseudo_eval_times( | 
					
						
							|  |  |  |             "ImageNet16-120", None, "ori-test", eval_ori_test_time | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     return hp2info | 
					
						
							| 
									
										
										
										
											2020-06-30 09:05:38 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def simplify(save_dir, save_name, nets, total): | 
					
						
							| 
									
										
										
										
											2020-08-28 06:02:35 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     hps, seeds = ["01", "12", "90"], set() | 
					
						
							| 
									
										
										
										
											2020-06-30 09:05:38 +00:00
										 |  |  |     for hp in hps: | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         sub_save_dir = save_dir / "raw-data-{:}".format(hp) | 
					
						
							|  |  |  |         ckps = sorted(list(sub_save_dir.glob("arch-*-seed-*.pth"))) | 
					
						
							|  |  |  |         seed2names = defaultdict(list) | 
					
						
							|  |  |  |         for ckp in ckps: | 
					
						
							|  |  |  |             parts = re.split("-|\.", ckp.name) | 
					
						
							|  |  |  |             seed2names[parts[3]].append(ckp.name) | 
					
						
							|  |  |  |         print("DIR : {:}".format(sub_save_dir)) | 
					
						
							|  |  |  |         nums = [] | 
					
						
							|  |  |  |         for seed, xlist in seed2names.items(): | 
					
						
							|  |  |  |             seeds.add(seed) | 
					
						
							|  |  |  |             nums.append(len(xlist)) | 
					
						
							|  |  |  |             print("  [seed={:}] there are {:} checkpoints.".format(seed, len(xlist))) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         assert ( | 
					
						
							|  |  |  |             len(nets) == total == max(nums) | 
					
						
							|  |  |  |         ), "there are some missed files : {:} vs {:}".format(max(nums), total) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     print("{:} start simplify the checkpoint.".format(time_string())) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     datasets = ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Create the directory to save the processed data | 
					
						
							|  |  |  |     # full_save_dir contains all benchmark files with trained weights. | 
					
						
							|  |  |  |     # simplify_save_dir contains all benchmark files without trained weights. | 
					
						
							|  |  |  |     full_save_dir = save_dir / (save_name + "-FULL") | 
					
						
							|  |  |  |     simple_save_dir = save_dir / (save_name + "-SIMPLIFY") | 
					
						
							|  |  |  |     full_save_dir.mkdir(parents=True, exist_ok=True) | 
					
						
							|  |  |  |     simple_save_dir.mkdir(parents=True, exist_ok=True) | 
					
						
							|  |  |  |     # all data in memory | 
					
						
							|  |  |  |     arch2infos, evaluated_indexes = dict(), set() | 
					
						
							|  |  |  |     end_time, arch_time = time.time(), AverageMeter() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for index in tqdm(range(total)): | 
					
						
							|  |  |  |         arch_str = nets[index] | 
					
						
							|  |  |  |         hp2info = OrderedDict() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         full_save_path = full_save_dir / "{:06d}.pickle".format(index) | 
					
						
							|  |  |  |         simple_save_path = simple_save_dir / "{:06d}.pickle".format(index) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for hp in hps: | 
					
						
							|  |  |  |             sub_save_dir = save_dir / "raw-data-{:}".format(hp) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             ckps = [ | 
					
						
							|  |  |  |                 sub_save_dir / "arch-{:06d}-seed-{:}.pth".format(index, seed) | 
					
						
							|  |  |  |                 for seed in seeds | 
					
						
							|  |  |  |             ] | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ckps = [x for x in ckps if x.exists()] | 
					
						
							|  |  |  |             if len(ckps) == 0: | 
					
						
							|  |  |  |                 raise ValueError("Invalid data : index={:}, hp={:}".format(index, hp)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             arch_info = account_one_arch(index, arch_str, ckps, datasets) | 
					
						
							|  |  |  |             hp2info[hp] = arch_info | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         hp2info = correct_time_related_info(hp2info) | 
					
						
							|  |  |  |         evaluated_indexes.add(index) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         hp2info["01"].clear_params()  # to save some spaces... | 
					
						
							|  |  |  |         to_save_data = OrderedDict( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             { | 
					
						
							|  |  |  |                 "01": hp2info["01"].state_dict(), | 
					
						
							|  |  |  |                 "12": hp2info["12"].state_dict(), | 
					
						
							|  |  |  |                 "90": hp2info["90"].state_dict(), | 
					
						
							|  |  |  |             } | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ) | 
					
						
							|  |  |  |         pickle_save(to_save_data, str(full_save_path)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for hp in hps: | 
					
						
							|  |  |  |             hp2info[hp].clear_params() | 
					
						
							|  |  |  |         to_save_data = OrderedDict( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             { | 
					
						
							|  |  |  |                 "01": hp2info["01"].state_dict(), | 
					
						
							|  |  |  |                 "12": hp2info["12"].state_dict(), | 
					
						
							|  |  |  |                 "90": hp2info["90"].state_dict(), | 
					
						
							|  |  |  |             } | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ) | 
					
						
							|  |  |  |         pickle_save(to_save_data, str(simple_save_path)) | 
					
						
							|  |  |  |         arch2infos[index] = to_save_data | 
					
						
							|  |  |  |         # measure elapsed time | 
					
						
							|  |  |  |         arch_time.update(time.time() - end_time) | 
					
						
							|  |  |  |         end_time = time.time() | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         need_time = "{:}".format( | 
					
						
							|  |  |  |             convert_secs2time(arch_time.avg * (total - index - 1), True) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         # print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time)) | 
					
						
							|  |  |  |     print("{:} {:} done.".format(time_string(), save_name)) | 
					
						
							|  |  |  |     final_infos = { | 
					
						
							|  |  |  |         "meta_archs": nets, | 
					
						
							|  |  |  |         "total_archs": total, | 
					
						
							|  |  |  |         "arch2infos": arch2infos, | 
					
						
							|  |  |  |         "evaluated_indexes": evaluated_indexes, | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     save_file_name = save_dir / "{:}.pickle".format(save_name) | 
					
						
							|  |  |  |     pickle_save(final_infos, str(save_file_name)) | 
					
						
							|  |  |  |     # move the benchmark file to a new path | 
					
						
							|  |  |  |     hd5sum = get_md5_file(str(save_file_name) + ".pbz2") | 
					
						
							|  |  |  |     hd5_file_name = save_dir / "{:}-{:}.pickle.pbz2".format(NATS_SSS_BASE_NAME, hd5sum) | 
					
						
							|  |  |  |     shutil.move(str(save_file_name) + ".pbz2", hd5_file_name) | 
					
						
							|  |  |  |     print( | 
					
						
							|  |  |  |         "Save {:} / {:} architecture results into {:} -> {:}.".format( | 
					
						
							|  |  |  |             len(evaluated_indexes), total, save_file_name, hd5_file_name | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     # move the directory to a new path | 
					
						
							|  |  |  |     hd5_full_save_dir = save_dir / "{:}-{:}-full".format(NATS_SSS_BASE_NAME, hd5sum) | 
					
						
							|  |  |  |     hd5_simple_save_dir = save_dir / "{:}-{:}-simple".format(NATS_SSS_BASE_NAME, hd5sum) | 
					
						
							|  |  |  |     shutil.move(full_save_dir, hd5_full_save_dir) | 
					
						
							|  |  |  |     shutil.move(simple_save_dir, hd5_simple_save_dir) | 
					
						
							|  |  |  |     # save the meta information for simple and full | 
					
						
							|  |  |  |     final_infos["arch2infos"] = None | 
					
						
							|  |  |  |     final_infos["evaluated_indexes"] = set() | 
					
						
							|  |  |  |     pickle_save(final_infos, str(hd5_full_save_dir / "meta.pickle")) | 
					
						
							|  |  |  |     pickle_save(final_infos, str(hd5_simple_save_dir / "meta.pickle")) | 
					
						
							| 
									
										
										
										
											2020-06-30 09:05:38 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def traverse_net(candidates: List[int], N: int): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     nets = [""] | 
					
						
							|  |  |  |     for i in range(N): | 
					
						
							|  |  |  |         new_nets = [] | 
					
						
							|  |  |  |         for net in nets: | 
					
						
							|  |  |  |             for C in candidates: | 
					
						
							|  |  |  |                 new_nets.append(str(C) if net == "" else "{:}:{:}".format(net, C)) | 
					
						
							|  |  |  |         nets = new_nets | 
					
						
							|  |  |  |     return nets | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         description="NATS-Bench (size search space)", | 
					
						
							|  |  |  |         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--base_save_dir", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default="./output/NATS-Bench-size", | 
					
						
							|  |  |  |         help="The base-name of folder to save checkpoints and log.", | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--candidateC", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         nargs="+", | 
					
						
							|  |  |  |         default=[8, 16, 24, 32, 40, 48, 56, 64], | 
					
						
							|  |  |  |         help=".", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--num_layers", type=int, default=5, help="The number of layers in a network." | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     parser.add_argument("--check_N", type=int, default=32768, help="For safety.") | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--save_name", type=str, default="process", help="The save directory." | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     args = parser.parse_args() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     nets = traverse_net(args.candidateC, args.num_layers) | 
					
						
							|  |  |  |     if len(nets) != args.check_N: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         raise ValueError( | 
					
						
							|  |  |  |             "Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     save_dir = Path(args.base_save_dir) | 
					
						
							|  |  |  |     simplify(save_dir, args.save_name, nets, args.check_N) |