114 lines
3.6 KiB
Python
114 lines
3.6 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
__all__ = ['OPS', 'ReLUConvBN', 'SearchSpaceNames']
|
||
|
|
||
|
OPS = {
|
||
|
'none' : lambda C_in, C_out, stride: Zero(C_in, C_out, stride),
|
||
|
'avg_pool_3x3' : lambda C_in, C_out, stride: POOLING(C_in, C_out, stride, 'avg'),
|
||
|
'max_pool_3x3' : lambda C_in, C_out, stride: POOLING(C_in, C_out, stride, 'max'),
|
||
|
'nor_conv_7x7' : lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1)),
|
||
|
'nor_conv_3x3' : lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1)),
|
||
|
'nor_conv_1x1' : lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1)),
|
||
|
'skip_connect' : lambda C_in, C_out, stride: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride),
|
||
|
}
|
||
|
|
||
|
CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3']
|
||
|
|
||
|
SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK}
|
||
|
|
||
|
|
||
|
class POOLING(nn.Module):
|
||
|
|
||
|
def __init__(self, C_in, C_out, stride, mode):
|
||
|
super(POOLING, self).__init__()
|
||
|
if C_in == C_out:
|
||
|
self.preprocess = None
|
||
|
else:
|
||
|
self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0)
|
||
|
if mode == 'avg' : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False)
|
||
|
elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1)
|
||
|
else : raise ValueError('Invalid mode={:} in POOLING'.format(mode))
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
if self.preprocess: x = self.preprocess(inputs)
|
||
|
else : x = inputs
|
||
|
return self.op(x)
|
||
|
|
||
|
|
||
|
class ReLUConvBN(nn.Module):
|
||
|
|
||
|
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation):
|
||
|
super(ReLUConvBN, self).__init__()
|
||
|
self.op = nn.Sequential(
|
||
|
nn.ReLU(inplace=False),
|
||
|
nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False),
|
||
|
nn.BatchNorm2d(C_out)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.op(x)
|
||
|
|
||
|
|
||
|
class Identity(nn.Module):
|
||
|
|
||
|
def __init__(self):
|
||
|
super(Identity, self).__init__()
|
||
|
|
||
|
def forward(self, x):
|
||
|
return x
|
||
|
|
||
|
|
||
|
class Zero(nn.Module):
|
||
|
|
||
|
def __init__(self, C_in, C_out, stride):
|
||
|
super(Zero, self).__init__()
|
||
|
self.C_in = C_in
|
||
|
self.C_out = C_out
|
||
|
self.stride = stride
|
||
|
self.is_zero = True
|
||
|
|
||
|
def forward(self, x):
|
||
|
if self.C_in == self.C_out:
|
||
|
if self.stride == 1: return x.mul(0.)
|
||
|
else : return x[:,:,::self.stride,::self.stride].mul(0.)
|
||
|
else:
|
||
|
shape = list(x.shape)
|
||
|
shape[1] = self.C_out
|
||
|
zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device)
|
||
|
return zeros
|
||
|
|
||
|
def extra_repr(self):
|
||
|
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
|
||
|
|
||
|
|
||
|
class FactorizedReduce(nn.Module):
|
||
|
|
||
|
def __init__(self, C_in, C_out, stride):
|
||
|
super(FactorizedReduce, self).__init__()
|
||
|
self.stride = stride
|
||
|
self.C_in = C_in
|
||
|
self.C_out = C_out
|
||
|
self.relu = nn.ReLU(inplace=False)
|
||
|
if stride == 2:
|
||
|
#assert C_out % 2 == 0, 'C_out : {:}'.format(C_out)
|
||
|
C_outs = [C_out // 2, C_out - C_out // 2]
|
||
|
self.convs = nn.ModuleList()
|
||
|
for i in range(2):
|
||
|
self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False) )
|
||
|
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
|
||
|
else:
|
||
|
raise ValueError('Invalid stride : {:}'.format(stride))
|
||
|
|
||
|
self.bn = nn.BatchNorm2d(C_out)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.relu(x)
|
||
|
y = self.pad(x)
|
||
|
out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1)
|
||
|
out = self.bn(out)
|
||
|
return out
|
||
|
|
||
|
def extra_repr(self):
|
||
|
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
|