| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  | ################################################## | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | 
					
						
							| 
									
										
										
										
											2019-11-11 00:46:02 +11:00
										 |  |  | ######################################################## | 
					
						
							|  |  |  | # DARTS: Differentiable Architecture Search, ICLR 2019 # | 
					
						
							|  |  |  | ######################################################## | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  | import os, sys, time, glob, random, argparse | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | from copy import deepcopy | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from pathlib import Path | 
					
						
							|  |  |  | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | 
					
						
							|  |  |  | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | 
					
						
							|  |  |  | from config_utils import load_config, dict2config, configure2str | 
					
						
							| 
									
										
										
										
											2020-01-11 00:19:58 +11:00
										 |  |  | from datasets     import get_datasets, get_nas_search_loaders | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  | from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | 
					
						
							|  |  |  | from utils        import get_model_infos, obtain_accuracy | 
					
						
							|  |  |  | from log_utils    import AverageMeter, time_string, convert_secs2time | 
					
						
							|  |  |  | from models       import get_cell_based_tiny_net, get_search_spaces | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | from nas_201_api  import NASBench201API as API | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def _concat(xs): | 
					
						
							|  |  |  |   return torch.cat([x.view(-1) for x in xs]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def _hessian_vector_product(vector, network, criterion, base_inputs, base_targets, r=1e-2): | 
					
						
							|  |  |  |   R = r / _concat(vector).norm() | 
					
						
							|  |  |  |   for p, v in zip(network.module.get_weights(), vector): | 
					
						
							|  |  |  |     p.data.add_(R, v) | 
					
						
							|  |  |  |   _, logits = network(base_inputs) | 
					
						
							|  |  |  |   loss = criterion(logits, base_targets) | 
					
						
							|  |  |  |   grads_p = torch.autograd.grad(loss, network.module.get_alphas()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   for p, v in zip(network.module.get_weights(), vector): | 
					
						
							|  |  |  |     p.data.sub_(2*R, v) | 
					
						
							|  |  |  |   _, logits = network(base_inputs) | 
					
						
							|  |  |  |   loss = criterion(logits, base_targets) | 
					
						
							|  |  |  |   grads_n = torch.autograd.grad(loss, network.module.get_alphas()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   for p, v in zip(network.module.get_weights(), vector): | 
					
						
							|  |  |  |     p.data.add_(R, v) | 
					
						
							|  |  |  |   return [(x-y).div_(2*R) for x, y in zip(grads_p, grads_n)] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def backward_step_unrolled(network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets): | 
					
						
							|  |  |  |   # _compute_unrolled_model | 
					
						
							|  |  |  |   _, logits = network(base_inputs) | 
					
						
							|  |  |  |   loss = criterion(logits, base_targets) | 
					
						
							|  |  |  |   LR, WD, momentum = w_optimizer.param_groups[0]['lr'], w_optimizer.param_groups[0]['weight_decay'], w_optimizer.param_groups[0]['momentum'] | 
					
						
							|  |  |  |   with torch.no_grad(): | 
					
						
							|  |  |  |     theta = _concat(network.module.get_weights()) | 
					
						
							|  |  |  |     try: | 
					
						
							|  |  |  |       moment = _concat(w_optimizer.state[v]['momentum_buffer'] for v in network.module.get_weights()) | 
					
						
							|  |  |  |       moment = moment.mul_(momentum) | 
					
						
							|  |  |  |     except: | 
					
						
							|  |  |  |       moment = torch.zeros_like(theta) | 
					
						
							|  |  |  |     dtheta = _concat(torch.autograd.grad(loss, network.module.get_weights())) + WD*theta | 
					
						
							|  |  |  |     params = theta.sub(LR, moment+dtheta) | 
					
						
							|  |  |  |   unrolled_model = deepcopy(network) | 
					
						
							|  |  |  |   model_dict  = unrolled_model.state_dict() | 
					
						
							|  |  |  |   new_params, offset = {}, 0 | 
					
						
							|  |  |  |   for k, v in network.named_parameters(): | 
					
						
							|  |  |  |     if 'arch_parameters' in k: continue | 
					
						
							|  |  |  |     v_length = np.prod(v.size()) | 
					
						
							|  |  |  |     new_params[k] = params[offset: offset+v_length].view(v.size()) | 
					
						
							|  |  |  |     offset += v_length | 
					
						
							|  |  |  |   model_dict.update(new_params) | 
					
						
							|  |  |  |   unrolled_model.load_state_dict(model_dict) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   unrolled_model.zero_grad() | 
					
						
							|  |  |  |   _, unrolled_logits = unrolled_model(arch_inputs) | 
					
						
							|  |  |  |   unrolled_loss = criterion(unrolled_logits, arch_targets) | 
					
						
							|  |  |  |   unrolled_loss.backward() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   dalpha = unrolled_model.module.arch_parameters.grad | 
					
						
							|  |  |  |   vector = [v.grad.data for v in unrolled_model.module.get_weights()] | 
					
						
							|  |  |  |   [implicit_grads] = _hessian_vector_product(vector, network, criterion, base_inputs, base_targets) | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   dalpha.data.sub_(LR, implicit_grads.data) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   if network.module.arch_parameters.grad is None: | 
					
						
							|  |  |  |     network.module.arch_parameters.grad = deepcopy( dalpha ) | 
					
						
							|  |  |  |   else: | 
					
						
							|  |  |  |     network.module.arch_parameters.grad.data.copy_( dalpha.data ) | 
					
						
							|  |  |  |   return unrolled_loss.detach(), unrolled_logits.detach() | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | 
					
						
							|  |  |  |   data_time, batch_time = AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |   network.train() | 
					
						
							|  |  |  |   end = time.time() | 
					
						
							|  |  |  |   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): | 
					
						
							|  |  |  |     scheduler.update(None, 1.0 * step / len(xloader)) | 
					
						
							|  |  |  |     base_targets = base_targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |     arch_targets = arch_targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |     # measure data loading time | 
					
						
							|  |  |  |     data_time.update(time.time() - end) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # update the architecture-weight | 
					
						
							|  |  |  |     a_optimizer.zero_grad() | 
					
						
							|  |  |  |     arch_loss, arch_logits = backward_step_unrolled(network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets) | 
					
						
							|  |  |  |     a_optimizer.step() | 
					
						
							|  |  |  |     # record | 
					
						
							|  |  |  |     arch_prec1, arch_prec5 = obtain_accuracy(arch_logits.data, arch_targets.data, topk=(1, 5)) | 
					
						
							|  |  |  |     arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | 
					
						
							|  |  |  |     arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |     arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     # update the weights | 
					
						
							|  |  |  |     w_optimizer.zero_grad() | 
					
						
							|  |  |  |     _, logits = network(base_inputs) | 
					
						
							|  |  |  |     base_loss = criterion(logits, base_targets) | 
					
						
							|  |  |  |     base_loss.backward() | 
					
						
							|  |  |  |     torch.nn.utils.clip_grad_norm_(network.parameters(), 5) | 
					
						
							|  |  |  |     w_optimizer.step() | 
					
						
							|  |  |  |     # record | 
					
						
							|  |  |  |     base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) | 
					
						
							|  |  |  |     base_losses.update(base_loss.item(),  base_inputs.size(0)) | 
					
						
							|  |  |  |     base_top1.update  (base_prec1.item(), base_inputs.size(0)) | 
					
						
							|  |  |  |     base_top5.update  (base_prec5.item(), base_inputs.size(0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # measure elapsed time | 
					
						
							|  |  |  |     batch_time.update(time.time() - end) | 
					
						
							|  |  |  |     end = time.time() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if step % print_freq == 0 or step + 1 == len(xloader): | 
					
						
							|  |  |  |       Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader)) | 
					
						
							|  |  |  |       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | 
					
						
							|  |  |  |       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) | 
					
						
							|  |  |  |       Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) | 
					
						
							|  |  |  |       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) | 
					
						
							|  |  |  |   return base_losses.avg, base_top1.avg, base_top5.avg | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def valid_func(xloader, network, criterion): | 
					
						
							|  |  |  |   data_time, batch_time = AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |   network.eval() | 
					
						
							|  |  |  |   end = time.time() | 
					
						
							|  |  |  |   with torch.no_grad(): | 
					
						
							|  |  |  |     for step, (arch_inputs, arch_targets) in enumerate(xloader): | 
					
						
							|  |  |  |       arch_targets = arch_targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |       # measure data loading time | 
					
						
							|  |  |  |       data_time.update(time.time() - end) | 
					
						
							|  |  |  |       # prediction | 
					
						
							|  |  |  |       _, logits = network(arch_inputs) | 
					
						
							|  |  |  |       arch_loss = criterion(logits, arch_targets) | 
					
						
							|  |  |  |       # record | 
					
						
							|  |  |  |       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | 
					
						
							|  |  |  |       arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | 
					
						
							|  |  |  |       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |       # measure elapsed time | 
					
						
							|  |  |  |       batch_time.update(time.time() - end) | 
					
						
							|  |  |  |       end = time.time() | 
					
						
							|  |  |  |   return arch_losses.avg, arch_top1.avg, arch_top5.avg | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def main(xargs): | 
					
						
							|  |  |  |   assert torch.cuda.is_available(), 'CUDA is not available.' | 
					
						
							|  |  |  |   torch.backends.cudnn.enabled   = True | 
					
						
							|  |  |  |   torch.backends.cudnn.benchmark = False | 
					
						
							|  |  |  |   torch.backends.cudnn.deterministic = True | 
					
						
							|  |  |  |   torch.set_num_threads( xargs.workers ) | 
					
						
							|  |  |  |   prepare_seed(xargs.rand_seed) | 
					
						
							|  |  |  |   logger = prepare_logger(args) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | 
					
						
							| 
									
										
										
										
											2020-01-09 22:26:23 +11:00
										 |  |  |   config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, logger) | 
					
						
							| 
									
										
										
										
											2020-01-11 00:19:58 +11:00
										 |  |  |   search_loader, _, valid_loader = get_nas_search_loaders(train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', config.batch_size, xargs.workers) | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |   logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) | 
					
						
							|  |  |  |   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   search_space = get_search_spaces('cell', xargs.search_space_name) | 
					
						
							|  |  |  |   model_config = dict2config({'name': 'DARTS-V2', 'C': xargs.channel, 'N': xargs.num_cells, | 
					
						
							|  |  |  |                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | 
					
						
							| 
									
										
										
										
											2020-01-11 18:46:31 +11:00
										 |  |  |                               'space'    : search_space, | 
					
						
							|  |  |  |                               'affine'   : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |   search_model = get_cell_based_tiny_net(model_config) | 
					
						
							| 
									
										
										
										
											2019-12-23 13:32:20 +11:00
										 |  |  |   logger.log('search-model :\n{:}'.format(search_model)) | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |    | 
					
						
							|  |  |  |   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | 
					
						
							|  |  |  |   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | 
					
						
							|  |  |  |   logger.log('w-optimizer : {:}'.format(w_optimizer)) | 
					
						
							|  |  |  |   logger.log('a-optimizer : {:}'.format(a_optimizer)) | 
					
						
							|  |  |  |   logger.log('w-scheduler : {:}'.format(w_scheduler)) | 
					
						
							|  |  |  |   logger.log('criterion   : {:}'.format(criterion)) | 
					
						
							|  |  |  |   flop, param  = get_model_infos(search_model, xshape) | 
					
						
							|  |  |  |   #logger.log('{:}'.format(search_model)) | 
					
						
							|  |  |  |   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | 
					
						
							| 
									
										
										
										
											2019-12-23 13:32:20 +11:00
										 |  |  |   if xargs.arch_nas_dataset is None: | 
					
						
							|  |  |  |     api = None | 
					
						
							|  |  |  |   else: | 
					
						
							|  |  |  |     api = API(xargs.arch_nas_dataset) | 
					
						
							|  |  |  |   logger.log('{:} create API = {:} done'.format(time_string(), api)) | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  |   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | 
					
						
							|  |  |  |   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   if last_info.exists(): # automatically resume from previous checkpoint | 
					
						
							|  |  |  |     logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) | 
					
						
							|  |  |  |     last_info   = torch.load(last_info) | 
					
						
							|  |  |  |     start_epoch = last_info['epoch'] | 
					
						
							|  |  |  |     checkpoint  = torch.load(last_info['last_checkpoint']) | 
					
						
							|  |  |  |     genotypes   = checkpoint['genotypes'] | 
					
						
							|  |  |  |     valid_accuracies = checkpoint['valid_accuracies'] | 
					
						
							|  |  |  |     search_model.load_state_dict( checkpoint['search_model'] ) | 
					
						
							|  |  |  |     w_scheduler.load_state_dict ( checkpoint['w_scheduler'] ) | 
					
						
							|  |  |  |     w_optimizer.load_state_dict ( checkpoint['w_optimizer'] ) | 
					
						
							|  |  |  |     a_optimizer.load_state_dict ( checkpoint['a_optimizer'] ) | 
					
						
							|  |  |  |     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) | 
					
						
							|  |  |  |   else: | 
					
						
							|  |  |  |     logger.log("=> do not find the last-info file : {:}".format(last_info)) | 
					
						
							| 
									
										
										
										
											2020-01-09 22:26:23 +11:00
										 |  |  |     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {-1: search_model.genotype()} | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  |   # start training | 
					
						
							| 
									
										
										
										
											2019-12-23 13:32:20 +11:00
										 |  |  |   start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |   for epoch in range(start_epoch, total_epoch): | 
					
						
							|  |  |  |     w_scheduler.update(epoch, 0.0) | 
					
						
							|  |  |  |     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | 
					
						
							|  |  |  |     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | 
					
						
							|  |  |  |     min_LR    = min(w_scheduler.get_lr()) | 
					
						
							|  |  |  |     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min_LR)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | 
					
						
							| 
									
										
										
										
											2019-12-23 13:32:20 +11:00
										 |  |  |     search_time.update(time.time() - start_time) | 
					
						
							|  |  |  |     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | 
					
						
							|  |  |  |     logger.log('[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | 
					
						
							|  |  |  |     # check the best accuracy | 
					
						
							|  |  |  |     valid_accuracies[epoch] = valid_a_top1 | 
					
						
							|  |  |  |     if valid_a_top1 > valid_accuracies['best']: | 
					
						
							|  |  |  |       valid_accuracies['best'] = valid_a_top1 | 
					
						
							|  |  |  |       genotypes['best']        = search_model.genotype() | 
					
						
							|  |  |  |       find_best = True | 
					
						
							|  |  |  |     else: find_best = False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     genotypes[epoch] = search_model.genotype() | 
					
						
							|  |  |  |     logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) | 
					
						
							|  |  |  |     # save checkpoint | 
					
						
							|  |  |  |     save_path = save_checkpoint({'epoch' : epoch + 1, | 
					
						
							|  |  |  |                 'args'  : deepcopy(xargs), | 
					
						
							|  |  |  |                 'search_model': search_model.state_dict(), | 
					
						
							|  |  |  |                 'w_optimizer' : w_optimizer.state_dict(), | 
					
						
							|  |  |  |                 'a_optimizer' : a_optimizer.state_dict(), | 
					
						
							|  |  |  |                 'w_scheduler' : w_scheduler.state_dict(), | 
					
						
							|  |  |  |                 'genotypes'   : genotypes, | 
					
						
							|  |  |  |                 'valid_accuracies' : valid_accuracies}, | 
					
						
							|  |  |  |                 model_base_path, logger) | 
					
						
							|  |  |  |     last_info = save_checkpoint({ | 
					
						
							|  |  |  |           'epoch': epoch + 1, | 
					
						
							|  |  |  |           'args' : deepcopy(args), | 
					
						
							|  |  |  |           'last_checkpoint': save_path, | 
					
						
							|  |  |  |           }, logger.path('info'), logger) | 
					
						
							|  |  |  |     if find_best: | 
					
						
							|  |  |  |       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1)) | 
					
						
							|  |  |  |       copy_checkpoint(model_base_path, model_best_path, logger) | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | 
					
						
							| 
									
										
										
										
											2019-12-23 13:32:20 +11:00
										 |  |  |     if api is not None: logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] ))) | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |     # measure elapsed time | 
					
						
							|  |  |  |     epoch_time.update(time.time() - start_time) | 
					
						
							|  |  |  |     start_time = time.time() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   logger.log('\n' + '-'*100) | 
					
						
							|  |  |  |   # check the performance from the architecture dataset | 
					
						
							| 
									
										
										
										
											2019-12-23 13:32:20 +11:00
										 |  |  |   logger.log('DARTS-V2 : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(total_epoch, search_time.sum, genotypes[total_epoch-1])) | 
					
						
							|  |  |  |   if api is not None: logger.log('{:}'.format( api.query_by_arch(genotypes[total_epoch-1]) )) | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |   logger.close() | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == '__main__': | 
					
						
							|  |  |  |   parser = argparse.ArgumentParser("DARTS Second Order") | 
					
						
							|  |  |  |   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | 
					
						
							|  |  |  |   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | 
					
						
							|  |  |  |   # channels and number-of-cells | 
					
						
							| 
									
										
										
										
											2020-01-09 22:26:23 +11:00
										 |  |  |   parser.add_argument('--config_path',        type=str,   help='The config path.') | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | 
					
						
							|  |  |  |   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | 
					
						
							|  |  |  |   parser.add_argument('--channel',            type=int,   help='The number of channels.') | 
					
						
							|  |  |  |   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | 
					
						
							| 
									
										
										
										
											2020-01-11 18:46:31 +11:00
										 |  |  |   parser.add_argument('--track_running_stats',type=int,   choices=[0,1],help='Whether use track_running_stats or not in the BN layer.') | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |   # architecture leraning rate | 
					
						
							|  |  |  |   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | 
					
						
							|  |  |  |   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | 
					
						
							|  |  |  |   # log | 
					
						
							|  |  |  |   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | 
					
						
							|  |  |  |   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | 
					
						
							|  |  |  |   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | 
					
						
							|  |  |  |   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | 
					
						
							|  |  |  |   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | 
					
						
							|  |  |  |   args = parser.parse_args() | 
					
						
							|  |  |  |   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | 
					
						
							|  |  |  |   main(args) |