| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  | ################################################## | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | 
					
						
							|  |  |  | ########################################################################## | 
					
						
							|  |  |  | # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | 
					
						
							|  |  |  | ########################################################################## | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  | import os, sys, time, glob, random, argparse | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | from copy import deepcopy | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from pathlib import Path | 
					
						
							|  |  |  | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | 
					
						
							|  |  |  | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | 
					
						
							|  |  |  | from config_utils import load_config, dict2config, configure2str | 
					
						
							| 
									
										
										
										
											2020-01-11 00:19:58 +11:00
										 |  |  | from datasets     import get_datasets, get_nas_search_loaders | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  | from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | 
					
						
							|  |  |  | from utils        import get_model_infos, obtain_accuracy | 
					
						
							|  |  |  | from log_utils    import AverageMeter, time_string, convert_secs2time | 
					
						
							|  |  |  | from models       import get_cell_based_tiny_net, get_search_spaces | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | from nas_201_api  import NASBench201API as API | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def train_shared_cnn(xloader, shared_cnn, controller, criterion, scheduler, optimizer, epoch_str, print_freq, logger): | 
					
						
							|  |  |  |   data_time, batch_time = AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |   losses, top1s, top5s, xend = AverageMeter(), AverageMeter(), AverageMeter(), time.time() | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   shared_cnn.train() | 
					
						
							|  |  |  |   controller.eval() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   for step, (inputs, targets) in enumerate(xloader): | 
					
						
							|  |  |  |     scheduler.update(None, 1.0 * step / len(xloader)) | 
					
						
							|  |  |  |     targets = targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |     # measure data loading time | 
					
						
							|  |  |  |     data_time.update(time.time() - xend) | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |       _, _, sampled_arch = controller() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     optimizer.zero_grad() | 
					
						
							|  |  |  |     shared_cnn.module.update_arch(sampled_arch) | 
					
						
							|  |  |  |     _, logits = shared_cnn(inputs) | 
					
						
							|  |  |  |     loss      = criterion(logits, targets) | 
					
						
							|  |  |  |     loss.backward() | 
					
						
							|  |  |  |     torch.nn.utils.clip_grad_norm_(shared_cnn.parameters(), 5) | 
					
						
							|  |  |  |     optimizer.step() | 
					
						
							|  |  |  |     # record | 
					
						
							|  |  |  |     prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | 
					
						
							|  |  |  |     losses.update(loss.item(),  inputs.size(0)) | 
					
						
							|  |  |  |     top1s.update (prec1.item(), inputs.size(0)) | 
					
						
							|  |  |  |     top5s.update (prec5.item(), inputs.size(0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # measure elapsed time | 
					
						
							|  |  |  |     batch_time.update(time.time() - xend) | 
					
						
							|  |  |  |     xend = time.time() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if step % print_freq == 0 or step + 1 == len(xloader): | 
					
						
							|  |  |  |       Sstr = '*Train-Shared-CNN* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader)) | 
					
						
							|  |  |  |       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | 
					
						
							|  |  |  |       Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=losses, top1=top1s, top5=top5s) | 
					
						
							|  |  |  |       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr) | 
					
						
							|  |  |  |   return losses.avg, top1s.avg, top5s.avg | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def train_controller(xloader, shared_cnn, controller, criterion, optimizer, config, epoch_str, print_freq, logger): | 
					
						
							|  |  |  |   # config. (containing some necessary arg) | 
					
						
							|  |  |  |   #   baseline: The baseline score (i.e. average val_acc) from the previous epoch | 
					
						
							|  |  |  |   data_time, batch_time = AverageMeter(), AverageMeter() | 
					
						
							| 
									
										
										
										
											2019-11-09 16:50:13 +11:00
										 |  |  |   GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time() | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |    | 
					
						
							|  |  |  |   shared_cnn.eval() | 
					
						
							|  |  |  |   controller.train() | 
					
						
							|  |  |  |   controller.zero_grad() | 
					
						
							|  |  |  |   #for step, (inputs, targets) in enumerate(xloader): | 
					
						
							|  |  |  |   loader_iter = iter(xloader) | 
					
						
							|  |  |  |   for step in range(config.ctl_train_steps * config.ctl_num_aggre): | 
					
						
							|  |  |  |     try: | 
					
						
							|  |  |  |       inputs, targets = next(loader_iter) | 
					
						
							|  |  |  |     except: | 
					
						
							|  |  |  |       loader_iter = iter(xloader) | 
					
						
							|  |  |  |       inputs, targets = next(loader_iter) | 
					
						
							|  |  |  |     targets = targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |     # measure data loading time | 
					
						
							|  |  |  |     data_time.update(time.time() - xend) | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     log_prob, entropy, sampled_arch = controller() | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |       shared_cnn.module.update_arch(sampled_arch) | 
					
						
							|  |  |  |       _, logits = shared_cnn(inputs) | 
					
						
							|  |  |  |       val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | 
					
						
							|  |  |  |       val_top1  = val_top1.view(-1) / 100 | 
					
						
							|  |  |  |     reward = val_top1 + config.ctl_entropy_w * entropy | 
					
						
							|  |  |  |     if config.baseline is None: | 
					
						
							|  |  |  |       baseline = val_top1 | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       baseline = config.baseline - (1 - config.ctl_bl_dec) * (config.baseline - reward) | 
					
						
							|  |  |  |     | 
					
						
							|  |  |  |     loss = -1 * log_prob * (reward - baseline) | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     # account | 
					
						
							|  |  |  |     RewardMeter.update(reward.item()) | 
					
						
							|  |  |  |     BaselineMeter.update(baseline.item()) | 
					
						
							| 
									
										
										
										
											2019-11-09 16:50:13 +11:00
										 |  |  |     ValAccMeter.update(val_top1.item()*100) | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |     LossMeter.update(loss.item()) | 
					
						
							| 
									
										
										
										
											2019-11-09 16:50:13 +11:00
										 |  |  |     EntropyMeter.update(entropy.item()) | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |    | 
					
						
							|  |  |  |     # Average gradient over controller_num_aggregate samples | 
					
						
							|  |  |  |     loss = loss / config.ctl_num_aggre | 
					
						
							|  |  |  |     loss.backward(retain_graph=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # measure elapsed time | 
					
						
							|  |  |  |     batch_time.update(time.time() - xend) | 
					
						
							|  |  |  |     xend = time.time() | 
					
						
							|  |  |  |     if (step+1) % config.ctl_num_aggre == 0: | 
					
						
							|  |  |  |       grad_norm = torch.nn.utils.clip_grad_norm_(controller.parameters(), 5.0) | 
					
						
							|  |  |  |       GradnormMeter.update(grad_norm) | 
					
						
							|  |  |  |       optimizer.step() | 
					
						
							|  |  |  |       controller.zero_grad() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if step % print_freq == 0: | 
					
						
							|  |  |  |       Sstr = '*Train-Controller* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, config.ctl_train_steps * config.ctl_num_aggre) | 
					
						
							|  |  |  |       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | 
					
						
							|  |  |  |       Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})'.format(loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter) | 
					
						
							| 
									
										
										
										
											2019-11-09 16:50:13 +11:00
										 |  |  |       Estr = 'Entropy={:.4f} ({:.4f})'.format(EntropyMeter.val, EntropyMeter.avg) | 
					
						
							|  |  |  |       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Estr) | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  |   return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg, baseline.item() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_best_arch(controller, shared_cnn, xloader, n_samples=10): | 
					
						
							|  |  |  |   with torch.no_grad(): | 
					
						
							|  |  |  |     controller.eval() | 
					
						
							|  |  |  |     shared_cnn.eval() | 
					
						
							|  |  |  |     archs, valid_accs = [], [] | 
					
						
							|  |  |  |     loader_iter = iter(xloader) | 
					
						
							|  |  |  |     for i in range(n_samples): | 
					
						
							|  |  |  |       try: | 
					
						
							|  |  |  |         inputs, targets = next(loader_iter) | 
					
						
							|  |  |  |       except: | 
					
						
							|  |  |  |         loader_iter = iter(xloader) | 
					
						
							|  |  |  |         inputs, targets = next(loader_iter) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       _, _, sampled_arch = controller() | 
					
						
							|  |  |  |       arch = shared_cnn.module.update_arch(sampled_arch) | 
					
						
							|  |  |  |       _, logits = shared_cnn(inputs) | 
					
						
							|  |  |  |       val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       archs.append( arch ) | 
					
						
							|  |  |  |       valid_accs.append( val_top1.item() ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     best_idx = np.argmax(valid_accs) | 
					
						
							|  |  |  |     best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx] | 
					
						
							|  |  |  |     return best_arch, best_valid_acc | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def valid_func(xloader, network, criterion): | 
					
						
							|  |  |  |   data_time, batch_time = AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |   network.eval() | 
					
						
							|  |  |  |   end = time.time() | 
					
						
							|  |  |  |   with torch.no_grad(): | 
					
						
							|  |  |  |     for step, (arch_inputs, arch_targets) in enumerate(xloader): | 
					
						
							|  |  |  |       arch_targets = arch_targets.cuda(non_blocking=True) | 
					
						
							|  |  |  |       # measure data loading time | 
					
						
							|  |  |  |       data_time.update(time.time() - end) | 
					
						
							|  |  |  |       # prediction | 
					
						
							|  |  |  |       _, logits = network(arch_inputs) | 
					
						
							|  |  |  |       arch_loss = criterion(logits, arch_targets) | 
					
						
							|  |  |  |       # record | 
					
						
							|  |  |  |       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | 
					
						
							|  |  |  |       arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | 
					
						
							|  |  |  |       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | 
					
						
							|  |  |  |       # measure elapsed time | 
					
						
							|  |  |  |       batch_time.update(time.time() - end) | 
					
						
							|  |  |  |       end = time.time() | 
					
						
							|  |  |  |   return arch_losses.avg, arch_top1.avg, arch_top5.avg | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def main(xargs): | 
					
						
							|  |  |  |   assert torch.cuda.is_available(), 'CUDA is not available.' | 
					
						
							|  |  |  |   torch.backends.cudnn.enabled   = True | 
					
						
							|  |  |  |   torch.backends.cudnn.benchmark = False | 
					
						
							|  |  |  |   torch.backends.cudnn.deterministic = True | 
					
						
							|  |  |  |   torch.set_num_threads( xargs.workers ) | 
					
						
							|  |  |  |   prepare_seed(xargs.rand_seed) | 
					
						
							|  |  |  |   logger = prepare_logger(args) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   train_data, test_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | 
					
						
							|  |  |  |   logger.log('use config from : {:}'.format(xargs.config_path)) | 
					
						
							|  |  |  |   config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, logger) | 
					
						
							| 
									
										
										
										
											2020-01-11 00:19:58 +11:00
										 |  |  |   _, train_loader, valid_loader = get_nas_search_loaders(train_data, test_data, xargs.dataset, 'configs/nas-benchmark/', config.batch_size, xargs.workers) | 
					
						
							|  |  |  |   # since ENAS will train the controller on valid-loader, we need to use train transformation for valid-loader | 
					
						
							|  |  |  |   valid_loader.dataset.transform = deepcopy(train_loader.dataset.transform) | 
					
						
							|  |  |  |   if hasattr(valid_loader.dataset, 'transforms'): | 
					
						
							|  |  |  |     valid_loader.dataset.transforms = deepcopy(train_loader.dataset.transforms) | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |   # data loader | 
					
						
							|  |  |  |   logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) | 
					
						
							|  |  |  |   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   search_space = get_search_spaces('cell', xargs.search_space_name) | 
					
						
							|  |  |  |   model_config = dict2config({'name': 'ENAS', 'C': xargs.channel, 'N': xargs.num_cells, | 
					
						
							|  |  |  |                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | 
					
						
							| 
									
										
										
										
											2020-01-11 18:46:31 +11:00
										 |  |  |                               'space'    : search_space, | 
					
						
							|  |  |  |                               'affine'   : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |   shared_cnn = get_cell_based_tiny_net(model_config) | 
					
						
							|  |  |  |   controller = shared_cnn.create_controller() | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   w_optimizer, w_scheduler, criterion = get_optim_scheduler(shared_cnn.parameters(), config) | 
					
						
							|  |  |  |   a_optimizer = torch.optim.Adam(controller.parameters(), lr=config.controller_lr, betas=config.controller_betas, eps=config.controller_eps) | 
					
						
							|  |  |  |   logger.log('w-optimizer : {:}'.format(w_optimizer)) | 
					
						
							|  |  |  |   logger.log('a-optimizer : {:}'.format(a_optimizer)) | 
					
						
							|  |  |  |   logger.log('w-scheduler : {:}'.format(w_scheduler)) | 
					
						
							|  |  |  |   logger.log('criterion   : {:}'.format(criterion)) | 
					
						
							|  |  |  |   #flop, param  = get_model_infos(shared_cnn, xshape) | 
					
						
							|  |  |  |   #logger.log('{:}'.format(shared_cnn)) | 
					
						
							|  |  |  |   #logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | 
					
						
							| 
									
										
										
										
											2019-12-24 17:36:47 +11:00
										 |  |  |   logger.log('search-space : {:}'.format(search_space)) | 
					
						
							|  |  |  |   if xargs.arch_nas_dataset is None: | 
					
						
							|  |  |  |     api = None | 
					
						
							|  |  |  |   else: | 
					
						
							|  |  |  |     api = API(xargs.arch_nas_dataset) | 
					
						
							|  |  |  |   logger.log('{:} create API = {:} done'.format(time_string(), api)) | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |   shared_cnn, controller, criterion = torch.nn.DataParallel(shared_cnn).cuda(), controller.cuda(), criterion.cuda() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   if last_info.exists(): # automatically resume from previous checkpoint | 
					
						
							|  |  |  |     logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) | 
					
						
							|  |  |  |     last_info   = torch.load(last_info) | 
					
						
							|  |  |  |     start_epoch = last_info['epoch'] | 
					
						
							|  |  |  |     checkpoint  = torch.load(last_info['last_checkpoint']) | 
					
						
							|  |  |  |     genotypes   = checkpoint['genotypes'] | 
					
						
							|  |  |  |     baseline    = checkpoint['baseline'] | 
					
						
							|  |  |  |     valid_accuracies = checkpoint['valid_accuracies'] | 
					
						
							|  |  |  |     shared_cnn.load_state_dict( checkpoint['shared_cnn'] ) | 
					
						
							|  |  |  |     controller.load_state_dict( checkpoint['controller'] ) | 
					
						
							|  |  |  |     w_scheduler.load_state_dict ( checkpoint['w_scheduler'] ) | 
					
						
							|  |  |  |     w_optimizer.load_state_dict ( checkpoint['w_optimizer'] ) | 
					
						
							|  |  |  |     a_optimizer.load_state_dict ( checkpoint['a_optimizer'] ) | 
					
						
							|  |  |  |     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) | 
					
						
							|  |  |  |   else: | 
					
						
							|  |  |  |     logger.log("=> do not find the last-info file : {:}".format(last_info)) | 
					
						
							|  |  |  |     start_epoch, valid_accuracies, genotypes, baseline = 0, {'best': -1}, {}, None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # start training | 
					
						
							| 
									
										
										
										
											2019-12-24 17:36:47 +11:00
										 |  |  |   start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |   for epoch in range(start_epoch, total_epoch): | 
					
						
							|  |  |  |     w_scheduler.update(epoch, 0.0) | 
					
						
							|  |  |  |     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | 
					
						
							|  |  |  |     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | 
					
						
							| 
									
										
										
										
											2019-11-09 16:50:13 +11:00
										 |  |  |     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}, baseline={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()), baseline)) | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  |     cnn_loss, cnn_top1, cnn_top5 = train_shared_cnn(train_loader, shared_cnn, controller, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, logger) | 
					
						
							|  |  |  |     logger.log('[{:}] shared-cnn : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, cnn_loss, cnn_top1, cnn_top5)) | 
					
						
							|  |  |  |     ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline \ | 
					
						
							|  |  |  |                                  = train_controller(valid_loader, shared_cnn, controller, criterion, a_optimizer, \ | 
					
						
							|  |  |  |                                                         dict2config({'baseline': baseline, | 
					
						
							|  |  |  |                                                                      'ctl_train_steps': xargs.controller_train_steps, 'ctl_num_aggre': xargs.controller_num_aggregate, | 
					
						
							|  |  |  |                                                                      'ctl_entropy_w': xargs.controller_entropy_weight,  | 
					
						
							|  |  |  |                                                                      'ctl_bl_dec'   : xargs.controller_bl_dec}, None), \ | 
					
						
							|  |  |  |                                                         epoch_str, xargs.print_freq, logger) | 
					
						
							| 
									
										
										
										
											2019-12-24 17:36:47 +11:00
										 |  |  |     search_time.update(time.time() - start_time) | 
					
						
							|  |  |  |     logger.log('[{:}] controller : loss={:.2f}, accuracy={:.2f}%, baseline={:.2f}, reward={:.2f}, current-baseline={:.4f}, time-cost={:.1f} s'.format(epoch_str, ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline, search_time.sum)) | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |     best_arch, _ = get_best_arch(controller, shared_cnn, valid_loader) | 
					
						
							|  |  |  |     shared_cnn.module.update_arch(best_arch) | 
					
						
							| 
									
										
										
										
											2019-11-09 16:50:13 +11:00
										 |  |  |     _, best_valid_acc, _ = valid_func(valid_loader, shared_cnn, criterion) | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  |     genotypes[epoch] = best_arch | 
					
						
							|  |  |  |     # check the best accuracy | 
					
						
							|  |  |  |     valid_accuracies[epoch] = best_valid_acc | 
					
						
							|  |  |  |     if best_valid_acc > valid_accuracies['best']: | 
					
						
							|  |  |  |       valid_accuracies['best'] = best_valid_acc | 
					
						
							|  |  |  |       genotypes['best']        = best_arch | 
					
						
							|  |  |  |       find_best = True | 
					
						
							|  |  |  |     else: find_best = False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) | 
					
						
							|  |  |  |     # save checkpoint | 
					
						
							|  |  |  |     save_path = save_checkpoint({'epoch' : epoch + 1, | 
					
						
							|  |  |  |                 'args'  : deepcopy(xargs), | 
					
						
							|  |  |  |                 'baseline'    : baseline, | 
					
						
							|  |  |  |                 'shared_cnn'  : shared_cnn.state_dict(), | 
					
						
							|  |  |  |                 'controller'  : controller.state_dict(), | 
					
						
							|  |  |  |                 'w_optimizer' : w_optimizer.state_dict(), | 
					
						
							|  |  |  |                 'a_optimizer' : a_optimizer.state_dict(), | 
					
						
							|  |  |  |                 'w_scheduler' : w_scheduler.state_dict(), | 
					
						
							|  |  |  |                 'genotypes'   : genotypes, | 
					
						
							|  |  |  |                 'valid_accuracies' : valid_accuracies}, | 
					
						
							|  |  |  |                 model_base_path, logger) | 
					
						
							|  |  |  |     last_info = save_checkpoint({ | 
					
						
							|  |  |  |           'epoch': epoch + 1, | 
					
						
							|  |  |  |           'args' : deepcopy(args), | 
					
						
							|  |  |  |           'last_checkpoint': save_path, | 
					
						
							|  |  |  |           }, logger.path('info'), logger) | 
					
						
							|  |  |  |     if find_best: | 
					
						
							|  |  |  |       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, best_valid_acc)) | 
					
						
							|  |  |  |       copy_checkpoint(model_base_path, model_best_path, logger) | 
					
						
							| 
									
										
										
										
											2019-12-24 17:36:47 +11:00
										 |  |  |     if api is not None: logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] ))) | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |     # measure elapsed time | 
					
						
							|  |  |  |     epoch_time.update(time.time() - start_time) | 
					
						
							|  |  |  |     start_time = time.time() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   logger.log('\n' + '-'*100) | 
					
						
							| 
									
										
										
										
											2019-11-09 16:50:13 +11:00
										 |  |  |   logger.log('During searching, the best architecture is {:}'.format(genotypes['best'])) | 
					
						
							|  |  |  |   logger.log('Its accuracy is {:.2f}%'.format(valid_accuracies['best'])) | 
					
						
							|  |  |  |   logger.log('Randomly select {:} architectures and select the best.'.format(xargs.controller_num_samples)) | 
					
						
							| 
									
										
										
										
											2019-12-24 17:36:47 +11:00
										 |  |  |   start_time = time.time() | 
					
						
							| 
									
										
										
										
											2019-11-09 16:50:13 +11:00
										 |  |  |   final_arch, _ = get_best_arch(controller, shared_cnn, valid_loader, xargs.controller_num_samples) | 
					
						
							| 
									
										
										
										
											2019-12-24 17:36:47 +11:00
										 |  |  |   search_time.update(time.time() - start_time) | 
					
						
							| 
									
										
										
										
											2019-11-09 16:50:13 +11:00
										 |  |  |   shared_cnn.module.update_arch(final_arch) | 
					
						
							|  |  |  |   final_loss, final_top1, final_top5 = valid_func(valid_loader, shared_cnn, criterion) | 
					
						
							|  |  |  |   logger.log('The Selected Final Architecture : {:}'.format(final_arch)) | 
					
						
							|  |  |  |   logger.log('Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%'.format(final_loss, final_top1, final_top5)) | 
					
						
							| 
									
										
										
										
											2019-12-24 17:36:47 +11:00
										 |  |  |   logger.log('ENAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(total_epoch, search_time.sum, final_arch)) | 
					
						
							|  |  |  |   if api is not None: logger.log('{:}'.format( api.query_by_arch(final_arch) )) | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |   logger.close() | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == '__main__': | 
					
						
							|  |  |  |   parser = argparse.ArgumentParser("ENAS") | 
					
						
							|  |  |  |   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | 
					
						
							|  |  |  |   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | 
					
						
							|  |  |  |   # channels and number-of-cells | 
					
						
							| 
									
										
										
										
											2020-01-11 18:46:31 +11:00
										 |  |  |   parser.add_argument('--track_running_stats',type=int,   choices=[0,1],help='Whether use track_running_stats or not in the BN layer.') | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | 
					
						
							|  |  |  |   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | 
					
						
							|  |  |  |   parser.add_argument('--channel',            type=int,   help='The number of channels.') | 
					
						
							|  |  |  |   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | 
					
						
							|  |  |  |   parser.add_argument('--config_path',        type=str,   help='The config file to train ENAS.') | 
					
						
							|  |  |  |   parser.add_argument('--controller_train_steps',    type=int,     help='.') | 
					
						
							|  |  |  |   parser.add_argument('--controller_num_aggregate',  type=int,     help='.') | 
					
						
							|  |  |  |   parser.add_argument('--controller_entropy_weight', type=float,   help='The weight for the entropy of the controller.') | 
					
						
							|  |  |  |   parser.add_argument('--controller_bl_dec'        , type=float,   help='.') | 
					
						
							|  |  |  |   parser.add_argument('--controller_num_samples'   , type=int,     help='.') | 
					
						
							|  |  |  |   # log | 
					
						
							|  |  |  |   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | 
					
						
							|  |  |  |   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | 
					
						
							|  |  |  |   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (nas-benchmark).') | 
					
						
							|  |  |  |   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | 
					
						
							|  |  |  |   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | 
					
						
							|  |  |  |   args = parser.parse_args() | 
					
						
							|  |  |  |   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | 
					
						
							|  |  |  |   main(args) |