| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  | ################################################## | 
					
						
							| 
									
										
										
										
											2019-11-15 17:26:32 +11:00
										 |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | 
					
						
							|  |  |  | ##################################################################################################### | 
					
						
							|  |  |  | # modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py # | 
					
						
							|  |  |  | ##################################################################################################### | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  | import os, sys, time, glob, random, argparse | 
					
						
							|  |  |  | import numpy as np, collections | 
					
						
							|  |  |  | from copy import deepcopy | 
					
						
							|  |  |  | from pathlib import Path | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from torch.distributions import Categorical | 
					
						
							|  |  |  | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | 
					
						
							|  |  |  | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | 
					
						
							|  |  |  | from config_utils import load_config, dict2config, configure2str | 
					
						
							|  |  |  | from datasets     import get_datasets, SearchDataset | 
					
						
							|  |  |  | from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | 
					
						
							|  |  |  | from utils        import get_model_infos, obtain_accuracy | 
					
						
							|  |  |  | from log_utils    import AverageMeter, time_string, convert_secs2time | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | from nas_201_api  import NASBench201API as API | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  | from models       import CellStructure, get_search_spaces | 
					
						
							|  |  |  | from R_EA import train_and_eval | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Policy(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self, max_nodes, search_space): | 
					
						
							|  |  |  |     super(Policy, self).__init__() | 
					
						
							|  |  |  |     self.max_nodes    = max_nodes | 
					
						
							|  |  |  |     self.search_space = deepcopy(search_space) | 
					
						
							|  |  |  |     self.edge2index   = {} | 
					
						
							|  |  |  |     for i in range(1, max_nodes): | 
					
						
							|  |  |  |       for j in range(i): | 
					
						
							|  |  |  |         node_str = '{:}<-{:}'.format(i, j) | 
					
						
							|  |  |  |         self.edge2index[ node_str ] = len(self.edge2index) | 
					
						
							|  |  |  |     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(len(self.edge2index), len(search_space)) ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def generate_arch(self, actions): | 
					
						
							|  |  |  |     genotypes = [] | 
					
						
							|  |  |  |     for i in range(1, self.max_nodes): | 
					
						
							|  |  |  |       xlist = [] | 
					
						
							|  |  |  |       for j in range(i): | 
					
						
							|  |  |  |         node_str = '{:}<-{:}'.format(i, j) | 
					
						
							|  |  |  |         op_name  = self.search_space[ actions[ self.edge2index[ node_str ] ] ] | 
					
						
							|  |  |  |         xlist.append((op_name, j)) | 
					
						
							|  |  |  |       genotypes.append( tuple(xlist) ) | 
					
						
							|  |  |  |     return CellStructure( genotypes ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def genotype(self): | 
					
						
							|  |  |  |     genotypes = [] | 
					
						
							|  |  |  |     for i in range(1, self.max_nodes): | 
					
						
							|  |  |  |       xlist = [] | 
					
						
							|  |  |  |       for j in range(i): | 
					
						
							|  |  |  |         node_str = '{:}<-{:}'.format(i, j) | 
					
						
							|  |  |  |         with torch.no_grad(): | 
					
						
							|  |  |  |           weights = self.arch_parameters[ self.edge2index[node_str] ] | 
					
						
							|  |  |  |           op_name = self.search_space[ weights.argmax().item() ] | 
					
						
							|  |  |  |         xlist.append((op_name, j)) | 
					
						
							|  |  |  |       genotypes.append( tuple(xlist) ) | 
					
						
							|  |  |  |     return CellStructure( genotypes ) | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |   def forward(self): | 
					
						
							|  |  |  |     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | 
					
						
							|  |  |  |     return alphas | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ExponentialMovingAverage(object): | 
					
						
							|  |  |  |   """Class that maintains an exponential moving average.""" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self, momentum): | 
					
						
							|  |  |  |     self._numerator   = 0 | 
					
						
							|  |  |  |     self._denominator = 0 | 
					
						
							|  |  |  |     self._momentum    = momentum | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def update(self, value): | 
					
						
							|  |  |  |     self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value | 
					
						
							|  |  |  |     self._denominator = self._momentum * self._denominator + (1 - self._momentum) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def value(self): | 
					
						
							|  |  |  |     """Return the current value of the moving average""" | 
					
						
							|  |  |  |     return self._numerator / self._denominator | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def select_action(policy): | 
					
						
							|  |  |  |   probs = policy() | 
					
						
							|  |  |  |   m = Categorical(probs) | 
					
						
							|  |  |  |   action = m.sample() | 
					
						
							|  |  |  |   #policy.saved_log_probs.append(m.log_prob(action)) | 
					
						
							|  |  |  |   return m.log_prob(action), action.cpu().tolist() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-11-19 11:58:04 +11:00
										 |  |  | def main(xargs, nas_bench): | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  |   assert torch.cuda.is_available(), 'CUDA is not available.' | 
					
						
							|  |  |  |   torch.backends.cudnn.enabled   = True | 
					
						
							|  |  |  |   torch.backends.cudnn.benchmark = False | 
					
						
							|  |  |  |   torch.backends.cudnn.deterministic = True | 
					
						
							|  |  |  |   torch.set_num_threads( xargs.workers ) | 
					
						
							|  |  |  |   prepare_seed(xargs.rand_seed) | 
					
						
							|  |  |  |   logger = prepare_logger(args) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-03-15 22:50:17 +11:00
										 |  |  |   if xargs.dataset == 'cifar10': | 
					
						
							|  |  |  |     dataname = 'cifar10-valid' | 
					
						
							|  |  |  |   else: | 
					
						
							|  |  |  |     dataname = xargs.dataset | 
					
						
							| 
									
										
										
										
											2019-12-31 22:02:11 +11:00
										 |  |  |   if xargs.data_path is not None: | 
					
						
							|  |  |  |     train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | 
					
						
							|  |  |  |     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | 
					
						
							|  |  |  |     cifar_split = load_config(split_Fpath, None, None) | 
					
						
							|  |  |  |     train_split, valid_split = cifar_split.train, cifar_split.valid | 
					
						
							|  |  |  |     logger.log('Load split file from {:}'.format(split_Fpath)) | 
					
						
							|  |  |  |     config_path = 'configs/nas-benchmark/algos/R-EA.config' | 
					
						
							|  |  |  |     config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | 
					
						
							|  |  |  |     # To split data | 
					
						
							|  |  |  |     train_data_v2 = deepcopy(train_data) | 
					
						
							|  |  |  |     train_data_v2.transform = valid_data.transform | 
					
						
							|  |  |  |     valid_data    = train_data_v2 | 
					
						
							|  |  |  |     search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | 
					
						
							|  |  |  |     # data loader | 
					
						
							|  |  |  |     train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True) | 
					
						
							|  |  |  |     valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | 
					
						
							|  |  |  |     logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) | 
					
						
							|  |  |  |     logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | 
					
						
							|  |  |  |     extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader} | 
					
						
							|  |  |  |   else: | 
					
						
							|  |  |  |     config_path = 'configs/nas-benchmark/algos/R-EA.config' | 
					
						
							|  |  |  |     config = load_config(config_path, None, logger) | 
					
						
							|  |  |  |     extra_info = {'config': config, 'train_loader': None, 'valid_loader': None} | 
					
						
							|  |  |  |     logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | 
					
						
							|  |  |  |    | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  |    | 
					
						
							|  |  |  |   search_space = get_search_spaces('cell', xargs.search_space_name) | 
					
						
							|  |  |  |   policy    = Policy(xargs.max_nodes, search_space) | 
					
						
							|  |  |  |   optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate) | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  |   #optimizer = torch.optim.SGD(policy.parameters(), lr=xargs.learning_rate) | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  |   eps       = np.finfo(np.float32).eps.item() | 
					
						
							|  |  |  |   baseline  = ExponentialMovingAverage(xargs.EMA_momentum) | 
					
						
							|  |  |  |   logger.log('policy    : {:}'.format(policy)) | 
					
						
							|  |  |  |   logger.log('optimizer : {:}'.format(optimizer)) | 
					
						
							|  |  |  |   logger.log('eps       : {:}'.format(eps)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # nas dataset load | 
					
						
							|  |  |  |   logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   # REINFORCE | 
					
						
							|  |  |  |   # attempts = 0 | 
					
						
							| 
									
										
										
										
											2020-01-01 22:18:42 +11:00
										 |  |  |   x_start_time = time.time() | 
					
						
							| 
									
										
										
										
											2019-12-25 10:30:50 +11:00
										 |  |  |   logger.log('Will start searching with time budget of {:} s.'.format(xargs.time_budget)) | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  |   total_steps, total_costs, trace = 0, 0, [] | 
					
						
							| 
									
										
										
										
											2019-12-25 10:30:50 +11:00
										 |  |  |   #for istep in range(xargs.RL_steps): | 
					
						
							|  |  |  |   while total_costs < xargs.time_budget: | 
					
						
							|  |  |  |     start_time = time.time() | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  |     log_prob, action = select_action( policy ) | 
					
						
							|  |  |  |     arch   = policy.generate_arch( action ) | 
					
						
							| 
									
										
										
										
											2020-03-15 22:50:17 +11:00
										 |  |  |     reward, cost_time = train_and_eval(arch, nas_bench, extra_info, dataname) | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  |     trace.append( (reward, arch) ) | 
					
						
							| 
									
										
										
										
											2019-12-25 10:30:50 +11:00
										 |  |  |     # accumulate time | 
					
						
							|  |  |  |     if total_costs + cost_time < xargs.time_budget: | 
					
						
							|  |  |  |       total_costs += cost_time | 
					
						
							|  |  |  |     else: break | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  |     baseline.update(reward) | 
					
						
							|  |  |  |     # calculate loss | 
					
						
							|  |  |  |     policy_loss = ( -log_prob * (reward - baseline.value()) ).sum() | 
					
						
							|  |  |  |     optimizer.zero_grad() | 
					
						
							|  |  |  |     policy_loss.backward() | 
					
						
							|  |  |  |     optimizer.step() | 
					
						
							| 
									
										
										
										
											2019-12-25 10:30:50 +11:00
										 |  |  |     # accumulate time | 
					
						
							|  |  |  |     total_costs += time.time() - start_time | 
					
						
							|  |  |  |     total_steps += 1 | 
					
						
							|  |  |  |     logger.log('step [{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'.format(total_steps, baseline.value(), policy_loss.item(), policy.genotype())) | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  |     #logger.log('----> {:}'.format(policy.arch_parameters)) | 
					
						
							| 
									
										
										
										
											2019-12-25 10:30:50 +11:00
										 |  |  |     #logger.log('') | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  |   # best_arch = policy.genotype() # first version | 
					
						
							|  |  |  |   best_arch = max(trace, key=lambda x: x[0])[1] | 
					
						
							| 
									
										
										
										
											2020-01-01 22:18:42 +11:00
										 |  |  |   logger.log('REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'.format(total_steps, total_costs, time.time()-x_start_time)) | 
					
						
							| 
									
										
										
										
											2019-11-19 11:58:04 +11:00
										 |  |  |   info = nas_bench.query_by_arch( best_arch ) | 
					
						
							|  |  |  |   if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) | 
					
						
							|  |  |  |   else           : logger.log('{:}'.format(info)) | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  |   logger.log('-'*100) | 
					
						
							|  |  |  |   logger.close() | 
					
						
							| 
									
										
										
										
											2019-11-19 11:58:04 +11:00
										 |  |  |   return logger.log_dir, nas_bench.query_index_by_arch( best_arch ) | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  |    | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == '__main__': | 
					
						
							|  |  |  |   parser = argparse.ArgumentParser("Regularized Evolution Algorithm") | 
					
						
							|  |  |  |   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | 
					
						
							|  |  |  |   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | 
					
						
							|  |  |  |   # channels and number-of-cells | 
					
						
							|  |  |  |   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | 
					
						
							|  |  |  |   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | 
					
						
							|  |  |  |   parser.add_argument('--channel',            type=int,   help='The number of channels.') | 
					
						
							|  |  |  |   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | 
					
						
							|  |  |  |   parser.add_argument('--learning_rate',      type=float, help='The learning rate for REINFORCE.') | 
					
						
							| 
									
										
										
										
											2019-12-25 10:30:50 +11:00
										 |  |  |   #parser.add_argument('--RL_steps',           type=int,   help='The steps for REINFORCE.') | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  |   parser.add_argument('--EMA_momentum',       type=float, help='The momentum value for EMA.') | 
					
						
							| 
									
										
										
										
											2019-12-25 10:30:50 +11:00
										 |  |  |   parser.add_argument('--time_budget',        type=int,   help='The total time cost budge for searching (in seconds).') | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  |   # log | 
					
						
							|  |  |  |   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | 
					
						
							|  |  |  |   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | 
					
						
							|  |  |  |   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | 
					
						
							|  |  |  |   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | 
					
						
							| 
									
										
										
										
											2019-11-19 11:58:04 +11:00
										 |  |  |   parser.add_argument('--rand_seed',          type=int,   default=-1,   help='manual seed') | 
					
						
							| 
									
										
										
										
											2019-11-14 13:55:42 +11:00
										 |  |  |   args = parser.parse_args() | 
					
						
							| 
									
										
										
										
											2019-11-19 11:58:04 +11:00
										 |  |  |   #if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | 
					
						
							|  |  |  |   if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset): | 
					
						
							|  |  |  |     nas_bench = None | 
					
						
							|  |  |  |   else: | 
					
						
							|  |  |  |     print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset)) | 
					
						
							| 
									
										
										
										
											2019-12-25 10:30:50 +11:00
										 |  |  |     nas_bench = API(args.arch_nas_dataset) | 
					
						
							| 
									
										
										
										
											2019-11-19 11:58:04 +11:00
										 |  |  |   if args.rand_seed < 0: | 
					
						
							|  |  |  |     save_dir, all_indexes, num = None, [], 500 | 
					
						
							|  |  |  |     for i in range(num): | 
					
						
							|  |  |  |       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num)) | 
					
						
							|  |  |  |       args.rand_seed = random.randint(1, 100000) | 
					
						
							|  |  |  |       save_dir, index = main(args, nas_bench) | 
					
						
							|  |  |  |       all_indexes.append( index ) | 
					
						
							|  |  |  |     torch.save(all_indexes, save_dir / 'results.pth') | 
					
						
							|  |  |  |   else: | 
					
						
							|  |  |  |     main(args, nas_bench) |