| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | ################################################## | 
					
						
							|  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | 
					
						
							|  |  |  | ################################################## | 
					
						
							| 
									
										
										
										
											2019-11-08 20:06:12 +11:00
										 |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from ..cell_operations import ResNetBasicblock | 
					
						
							|  |  |  | from .cells import InferCell | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | # The macro structure for architectures in NAS-Bench-201 | 
					
						
							| 
									
										
										
										
											2019-11-08 20:06:12 +11:00
										 |  |  | class TinyNetwork(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self, C, N, genotype, num_classes): | 
					
						
							|  |  |  |     super(TinyNetwork, self).__init__() | 
					
						
							|  |  |  |     self._C               = C | 
					
						
							|  |  |  |     self._layerN          = N | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.stem = nn.Sequential( | 
					
						
							|  |  |  |                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | 
					
						
							|  |  |  |                     nn.BatchNorm2d(C)) | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | 
					
						
							|  |  |  |     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     C_prev = C | 
					
						
							|  |  |  |     self.cells = nn.ModuleList() | 
					
						
							|  |  |  |     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | 
					
						
							|  |  |  |       if reduction: | 
					
						
							| 
									
										
										
										
											2019-12-02 18:03:40 +11:00
										 |  |  |         cell = ResNetBasicblock(C_prev, C_curr, 2, True) | 
					
						
							| 
									
										
										
										
											2019-11-08 20:06:12 +11:00
										 |  |  |       else: | 
					
						
							|  |  |  |         cell = InferCell(genotype, C_prev, C_curr, 1) | 
					
						
							|  |  |  |       self.cells.append( cell ) | 
					
						
							|  |  |  |       C_prev = cell.out_dim | 
					
						
							|  |  |  |     self._Layer= len(self.cells) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | 
					
						
							|  |  |  |     self.global_pooling = nn.AdaptiveAvgPool2d(1) | 
					
						
							|  |  |  |     self.classifier = nn.Linear(C_prev, num_classes) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_message(self): | 
					
						
							|  |  |  |     string = self.extra_repr() | 
					
						
							|  |  |  |     for i, cell in enumerate(self.cells): | 
					
						
							|  |  |  |       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | 
					
						
							|  |  |  |     return string | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def extra_repr(self): | 
					
						
							|  |  |  |     return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, inputs): | 
					
						
							|  |  |  |     feature = self.stem(inputs) | 
					
						
							|  |  |  |     for i, cell in enumerate(self.cells): | 
					
						
							|  |  |  |       feature = cell(feature) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     out = self.lastact(feature) | 
					
						
							|  |  |  |     out = self.global_pooling( out ) | 
					
						
							|  |  |  |     out = out.view(out.size(0), -1) | 
					
						
							|  |  |  |     logits = self.classifier(out) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return out, logits |