108 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			108 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | #################### | ||
|  | # DARTS, ICLR 2019 #  | ||
|  | #################### | ||
|  | import torch | ||
|  | import torch.nn as nn | ||
|  | from copy import deepcopy | ||
|  | from .search_cells     import NASNetSearchCell as SearchCell | ||
|  | from .genotypes        import Structure | ||
|  | 
 | ||
|  | 
 | ||
|  | # The macro structure is based on NASNet | ||
|  | class NASNetworkDARTS(nn.Module): | ||
|  | 
 | ||
|  |   def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats): | ||
|  |     super(NASNetworkDARTS, self).__init__() | ||
|  |     self._C        = C | ||
|  |     self._layerN   = N | ||
|  |     self._steps    = steps | ||
|  |     self._multiplier = multiplier | ||
|  |     self.stem = nn.Sequential( | ||
|  |                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||
|  |                     nn.BatchNorm2d(C*stem_multiplier)) | ||
|  |    | ||
|  |     # config for each layer | ||
|  |     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||
|  |     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||
|  | 
 | ||
|  |     num_edge, edge2index = None, None | ||
|  |     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||
|  | 
 | ||
|  |     self.cells = nn.ModuleList() | ||
|  |     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||
|  |       cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||
|  |       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||
|  |       else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||
|  |       self.cells.append( cell ) | ||
|  |       C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction | ||
|  |     self.op_names   = deepcopy( search_space ) | ||
|  |     self._Layer     = len(self.cells) | ||
|  |     self.edge2index = edge2index | ||
|  |     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||
|  |     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||
|  |     self.classifier = nn.Linear(C_prev, num_classes) | ||
|  |     self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||
|  |     self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||
|  | 
 | ||
|  |   def get_weights(self): | ||
|  |     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||
|  |     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||
|  |     xlist+= list( self.classifier.parameters() ) | ||
|  |     return xlist | ||
|  | 
 | ||
|  |   def get_alphas(self): | ||
|  |     return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||
|  | 
 | ||
|  |   def show_alphas(self): | ||
|  |     with torch.no_grad(): | ||
|  |       A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() ) | ||
|  |       B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() ) | ||
|  |     return '{:}\n{:}'.format(A, B) | ||
|  | 
 | ||
|  |   def get_message(self): | ||
|  |     string = self.extra_repr() | ||
|  |     for i, cell in enumerate(self.cells): | ||
|  |       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||
|  |     return string | ||
|  | 
 | ||
|  |   def extra_repr(self): | ||
|  |     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||
|  | 
 | ||
|  |   def genotype(self): | ||
|  |     def _parse(weights): | ||
|  |       gene = [] | ||
|  |       for i in range(self._steps): | ||
|  |         edges = [] | ||
|  |         for j in range(2+i): | ||
|  |           node_str = '{:}<-{:}'.format(i, j) | ||
|  |           ws = weights[ self.edge2index[node_str] ] | ||
|  |           for k, op_name in enumerate(self.op_names): | ||
|  |             if op_name == 'none': continue | ||
|  |             edges.append( (op_name, j, ws[k]) ) | ||
|  |         edges = sorted(edges, key=lambda x: -x[-1]) | ||
|  |         selected_edges = edges[:2] | ||
|  |         gene.append( tuple(selected_edges) ) | ||
|  |       return gene | ||
|  |     with torch.no_grad(): | ||
|  |       gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()) | ||
|  |       gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()) | ||
|  |     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)), | ||
|  |             'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||
|  | 
 | ||
|  |   def forward(self, inputs): | ||
|  | 
 | ||
|  |     normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1) | ||
|  |     reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1) | ||
|  | 
 | ||
|  |     s0 = s1 = self.stem(inputs) | ||
|  |     for i, cell in enumerate(self.cells): | ||
|  |       if cell.reduction: ww = reduce_w | ||
|  |       else             : ww = normal_w | ||
|  |       s0, s1 = s1, cell.forward_darts(s0, s1, ww) | ||
|  |     out = self.lastact(s1) | ||
|  |     out = self.global_pooling( out ) | ||
|  |     out = out.view(out.size(0), -1) | ||
|  |     logits = self.classifier(out) | ||
|  | 
 | ||
|  |     return out, logits |