| 
									
										
										
										
											2019-11-15 17:15:07 +11:00
										 |  |  | ################################################## | 
					
						
							|  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  | ########################################################################## | 
					
						
							|  |  |  | # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | 
					
						
							|  |  |  | ########################################################################## | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from copy import deepcopy | 
					
						
							|  |  |  | from ..cell_operations import ResNetBasicblock | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | from .search_cells     import NAS201SearchCell as SearchCell | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  | from .genotypes        import Structure | 
					
						
							|  |  |  | from .search_model_enas_utils import Controller | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TinyNetworkENAS(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-01-11 18:46:31 +11:00
										 |  |  |   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |     super(TinyNetworkENAS, self).__init__() | 
					
						
							|  |  |  |     self._C        = C | 
					
						
							|  |  |  |     self._layerN   = N | 
					
						
							|  |  |  |     self.max_nodes = max_nodes | 
					
						
							|  |  |  |     self.stem = nn.Sequential( | 
					
						
							|  |  |  |                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | 
					
						
							|  |  |  |                     nn.BatchNorm2d(C)) | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | 
					
						
							|  |  |  |     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     C_prev, num_edge, edge2index = C, None, None | 
					
						
							|  |  |  |     self.cells = nn.ModuleList() | 
					
						
							|  |  |  |     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | 
					
						
							|  |  |  |       if reduction: | 
					
						
							|  |  |  |         cell = ResNetBasicblock(C_prev, C_curr, 2) | 
					
						
							|  |  |  |       else: | 
					
						
							| 
									
										
										
										
											2020-01-11 18:46:31 +11:00
										 |  |  |         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | 
					
						
							| 
									
										
										
										
											2019-11-09 01:36:31 +11:00
										 |  |  |         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | 
					
						
							|  |  |  |         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | 
					
						
							|  |  |  |       self.cells.append( cell ) | 
					
						
							|  |  |  |       C_prev = cell.out_dim | 
					
						
							|  |  |  |     self.op_names   = deepcopy( search_space ) | 
					
						
							|  |  |  |     self._Layer     = len(self.cells) | 
					
						
							|  |  |  |     self.edge2index = edge2index | 
					
						
							|  |  |  |     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | 
					
						
							|  |  |  |     self.global_pooling = nn.AdaptiveAvgPool2d(1) | 
					
						
							|  |  |  |     self.classifier = nn.Linear(C_prev, num_classes) | 
					
						
							|  |  |  |     # to maintain the sampled architecture | 
					
						
							|  |  |  |     self.sampled_arch = None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def update_arch(self, _arch): | 
					
						
							|  |  |  |     if _arch is None: | 
					
						
							|  |  |  |       self.sampled_arch = None | 
					
						
							|  |  |  |     elif isinstance(_arch, Structure): | 
					
						
							|  |  |  |       self.sampled_arch = _arch | 
					
						
							|  |  |  |     elif isinstance(_arch, (list, tuple)): | 
					
						
							|  |  |  |       genotypes = [] | 
					
						
							|  |  |  |       for i in range(1, self.max_nodes): | 
					
						
							|  |  |  |         xlist = [] | 
					
						
							|  |  |  |         for j in range(i): | 
					
						
							|  |  |  |           node_str = '{:}<-{:}'.format(i, j) | 
					
						
							|  |  |  |           op_index = _arch[ self.edge2index[node_str] ] | 
					
						
							|  |  |  |           op_name  = self.op_names[ op_index ] | 
					
						
							|  |  |  |           xlist.append((op_name, j)) | 
					
						
							|  |  |  |         genotypes.append( tuple(xlist) ) | 
					
						
							|  |  |  |       self.sampled_arch = Structure(genotypes) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       raise ValueError('invalid type of input architecture : {:}'.format(_arch)) | 
					
						
							|  |  |  |     return self.sampled_arch | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |   def create_controller(self): | 
					
						
							|  |  |  |     return Controller(len(self.edge2index), len(self.op_names)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_message(self): | 
					
						
							|  |  |  |     string = self.extra_repr() | 
					
						
							|  |  |  |     for i, cell in enumerate(self.cells): | 
					
						
							|  |  |  |       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | 
					
						
							|  |  |  |     return string | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def extra_repr(self): | 
					
						
							|  |  |  |     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, inputs): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     feature = self.stem(inputs) | 
					
						
							|  |  |  |     for i, cell in enumerate(self.cells): | 
					
						
							|  |  |  |       if isinstance(cell, SearchCell): | 
					
						
							|  |  |  |         feature = cell.forward_dynamic(feature, self.sampled_arch) | 
					
						
							|  |  |  |       else: feature = cell(feature) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     out = self.lastact(feature) | 
					
						
							|  |  |  |     out = self.global_pooling( out ) | 
					
						
							|  |  |  |     out = out.view(out.size(0), -1) | 
					
						
							|  |  |  |     logits = self.classifier(out) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return out, logits |