| 
									
										
										
										
											2019-11-15 17:15:07 +11:00
										 |  |  | ################################################## | 
					
						
							|  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  | ###################################################################################### | 
					
						
							|  |  |  | # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # | 
					
						
							|  |  |  | ###################################################################################### | 
					
						
							| 
									
										
										
										
											2019-11-09 16:50:13 +11:00
										 |  |  | import torch, random | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from copy import deepcopy | 
					
						
							|  |  |  | from ..cell_operations import ResNetBasicblock | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | from .search_cells     import NAS201SearchCell as SearchCell | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  | from .genotypes        import Structure | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TinyNetworkSETN(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-12-24 17:36:47 +11:00
										 |  |  |   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |     super(TinyNetworkSETN, self).__init__() | 
					
						
							|  |  |  |     self._C        = C | 
					
						
							|  |  |  |     self._layerN   = N | 
					
						
							|  |  |  |     self.max_nodes = max_nodes | 
					
						
							|  |  |  |     self.stem = nn.Sequential( | 
					
						
							|  |  |  |                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | 
					
						
							|  |  |  |                     nn.BatchNorm2d(C)) | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | 
					
						
							|  |  |  |     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     C_prev, num_edge, edge2index = C, None, None | 
					
						
							|  |  |  |     self.cells = nn.ModuleList() | 
					
						
							|  |  |  |     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | 
					
						
							|  |  |  |       if reduction: | 
					
						
							|  |  |  |         cell = ResNetBasicblock(C_prev, C_curr, 2) | 
					
						
							|  |  |  |       else: | 
					
						
							| 
									
										
										
										
											2019-12-24 17:36:47 +11:00
										 |  |  |         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | 
					
						
							|  |  |  |         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | 
					
						
							|  |  |  |       self.cells.append( cell ) | 
					
						
							|  |  |  |       C_prev = cell.out_dim | 
					
						
							|  |  |  |     self.op_names   = deepcopy( search_space ) | 
					
						
							|  |  |  |     self._Layer     = len(self.cells) | 
					
						
							|  |  |  |     self.edge2index = edge2index | 
					
						
							|  |  |  |     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | 
					
						
							|  |  |  |     self.global_pooling = nn.AdaptiveAvgPool2d(1) | 
					
						
							|  |  |  |     self.classifier = nn.Linear(C_prev, num_classes) | 
					
						
							|  |  |  |     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | 
					
						
							|  |  |  |     self.mode       = 'urs' | 
					
						
							|  |  |  |     self.dynamic_cell = None | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |   def set_cal_mode(self, mode, dynamic_cell=None): | 
					
						
							|  |  |  |     assert mode in ['urs', 'joint', 'select', 'dynamic'] | 
					
						
							|  |  |  |     self.mode = mode | 
					
						
							|  |  |  |     if mode == 'dynamic': self.dynamic_cell = deepcopy( dynamic_cell ) | 
					
						
							|  |  |  |     else                : self.dynamic_cell = None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_cal_mode(self): | 
					
						
							|  |  |  |     return self.mode | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_weights(self): | 
					
						
							|  |  |  |     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | 
					
						
							|  |  |  |     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | 
					
						
							|  |  |  |     xlist+= list( self.classifier.parameters() ) | 
					
						
							|  |  |  |     return xlist | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_alphas(self): | 
					
						
							|  |  |  |     return [self.arch_parameters] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_message(self): | 
					
						
							|  |  |  |     string = self.extra_repr() | 
					
						
							|  |  |  |     for i, cell in enumerate(self.cells): | 
					
						
							|  |  |  |       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | 
					
						
							|  |  |  |     return string | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def extra_repr(self): | 
					
						
							|  |  |  |     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def genotype(self): | 
					
						
							|  |  |  |     genotypes = [] | 
					
						
							|  |  |  |     for i in range(1, self.max_nodes): | 
					
						
							|  |  |  |       xlist = [] | 
					
						
							|  |  |  |       for j in range(i): | 
					
						
							|  |  |  |         node_str = '{:}<-{:}'.format(i, j) | 
					
						
							|  |  |  |         with torch.no_grad(): | 
					
						
							|  |  |  |           weights = self.arch_parameters[ self.edge2index[node_str] ] | 
					
						
							|  |  |  |           op_name = self.op_names[ weights.argmax().item() ] | 
					
						
							|  |  |  |         xlist.append((op_name, j)) | 
					
						
							|  |  |  |       genotypes.append( tuple(xlist) ) | 
					
						
							|  |  |  |     return Structure( genotypes ) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-11-09 16:50:13 +11:00
										 |  |  |   def dync_genotype(self, use_random=False): | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |     genotypes = [] | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |       alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | 
					
						
							|  |  |  |     for i in range(1, self.max_nodes): | 
					
						
							|  |  |  |       xlist = [] | 
					
						
							|  |  |  |       for j in range(i): | 
					
						
							|  |  |  |         node_str = '{:}<-{:}'.format(i, j) | 
					
						
							| 
									
										
										
										
											2019-11-09 16:50:13 +11:00
										 |  |  |         if use_random: | 
					
						
							|  |  |  |           op_name  = random.choice(self.op_names) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |           weights  = alphas_cpu[ self.edge2index[node_str] ] | 
					
						
							|  |  |  |           op_index = torch.multinomial(weights, 1).item() | 
					
						
							|  |  |  |           op_name  = self.op_names[ op_index ] | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  |         xlist.append((op_name, j)) | 
					
						
							|  |  |  |       genotypes.append( tuple(xlist) ) | 
					
						
							|  |  |  |     return Structure( genotypes ) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-11-12 22:35:57 +11:00
										 |  |  |   def get_log_prob(self, arch): | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |       logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) | 
					
						
							|  |  |  |     select_logits = [] | 
					
						
							|  |  |  |     for i, node_info in enumerate(arch.nodes): | 
					
						
							|  |  |  |       for op, xin in node_info: | 
					
						
							|  |  |  |         node_str = '{:}<-{:}'.format(i+1, xin) | 
					
						
							|  |  |  |         op_index = self.op_names.index(op) | 
					
						
							|  |  |  |         select_logits.append( logits[self.edge2index[node_str], op_index] ) | 
					
						
							|  |  |  |     return sum(select_logits).item() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def return_topK(self, K): | 
					
						
							|  |  |  |     archs = Structure.gen_all(self.op_names, self.max_nodes, False) | 
					
						
							|  |  |  |     pairs = [(self.get_log_prob(arch), arch) for arch in archs] | 
					
						
							|  |  |  |     if K < 0 or K >= len(archs): K = len(archs) | 
					
						
							|  |  |  |     sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | 
					
						
							|  |  |  |     return_pairs = [sorted_pairs[_][1] for _ in range(K)] | 
					
						
							|  |  |  |     return return_pairs | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-11-05 23:35:28 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, inputs): | 
					
						
							|  |  |  |     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |       alphas_cpu = alphas.detach().cpu() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     feature = self.stem(inputs) | 
					
						
							|  |  |  |     for i, cell in enumerate(self.cells): | 
					
						
							|  |  |  |       if isinstance(cell, SearchCell): | 
					
						
							|  |  |  |         if self.mode == 'urs': | 
					
						
							|  |  |  |           feature = cell.forward_urs(feature) | 
					
						
							|  |  |  |         elif self.mode == 'select': | 
					
						
							|  |  |  |           feature = cell.forward_select(feature, alphas_cpu) | 
					
						
							|  |  |  |         elif self.mode == 'joint': | 
					
						
							|  |  |  |           feature = cell.forward_joint(feature, alphas) | 
					
						
							|  |  |  |         elif self.mode == 'dynamic': | 
					
						
							|  |  |  |           feature = cell.forward_dynamic(feature, self.dynamic_cell) | 
					
						
							|  |  |  |         else: raise ValueError('invalid mode={:}'.format(self.mode)) | 
					
						
							|  |  |  |       else: feature = cell(feature) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     out = self.lastact(feature) | 
					
						
							|  |  |  |     out = self.global_pooling( out ) | 
					
						
							|  |  |  |     out = out.view(out.size(0), -1) | 
					
						
							|  |  |  |     logits = self.classifier(out) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return out, logits |