167 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			167 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | import math, torch | ||
|  | import torch.nn as nn | ||
|  | import torch.nn.functional as F | ||
|  | from ..initialization import initialize_resnet | ||
|  | from ..SharedUtils    import additive_func | ||
|  | 
 | ||
|  | 
 | ||
|  | class ConvBNReLU(nn.Module): | ||
|  |    | ||
|  |   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||
|  |     super(ConvBNReLU, self).__init__() | ||
|  |     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||
|  |     else       : self.avg = None | ||
|  |     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||
|  |     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||
|  |     else       : self.bn  = None | ||
|  |     if has_relu: self.relu = nn.ReLU(inplace=True) | ||
|  |     else       : self.relu = None | ||
|  | 
 | ||
|  |   def forward(self, inputs): | ||
|  |     if self.avg : out = self.avg( inputs ) | ||
|  |     else        : out = inputs | ||
|  |     conv = self.conv( out ) | ||
|  |     if self.bn  : out = self.bn( conv ) | ||
|  |     else        : out = conv | ||
|  |     if self.relu: out = self.relu( out ) | ||
|  |     else        : out = out | ||
|  | 
 | ||
|  |     return out | ||
|  | 
 | ||
|  | 
 | ||
|  | class ResNetBasicblock(nn.Module): | ||
|  |   num_conv  = 2 | ||
|  |   expansion = 1 | ||
|  |   def __init__(self, iCs, stride): | ||
|  |     super(ResNetBasicblock, self).__init__() | ||
|  |     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||
|  |     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||
|  |     assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs) | ||
|  |      | ||
|  |     self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||
|  |     self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||
|  |     residual_in = iCs[0] | ||
|  |     if stride == 2: | ||
|  |       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||
|  |       residual_in = iCs[2] | ||
|  |     elif iCs[0] != iCs[2]: | ||
|  |       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||
|  |     else: | ||
|  |       self.downsample = None | ||
|  |     #self.out_dim  = max(residual_in, iCs[2]) | ||
|  |     self.out_dim  = iCs[2] | ||
|  | 
 | ||
|  |   def forward(self, inputs): | ||
|  |     basicblock = self.conv_a(inputs) | ||
|  |     basicblock = self.conv_b(basicblock) | ||
|  | 
 | ||
|  |     if self.downsample is not None: | ||
|  |       residual = self.downsample(inputs) | ||
|  |     else: | ||
|  |       residual = inputs | ||
|  |     out = residual + basicblock | ||
|  |     return F.relu(out, inplace=True) | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | class ResNetBottleneck(nn.Module): | ||
|  |   expansion = 4 | ||
|  |   num_conv  = 3 | ||
|  |   def __init__(self, iCs, stride): | ||
|  |     super(ResNetBottleneck, self).__init__() | ||
|  |     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||
|  |     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||
|  |     assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs) | ||
|  |     self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||
|  |     self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||
|  |     self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||
|  |     residual_in = iCs[0] | ||
|  |     if stride == 2: | ||
|  |       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False) | ||
|  |       residual_in     = iCs[3] | ||
|  |     elif iCs[0] != iCs[3]: | ||
|  |       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False) | ||
|  |       residual_in     = iCs[3] | ||
|  |     else: | ||
|  |       self.downsample = None | ||
|  |     #self.out_dim = max(residual_in, iCs[3]) | ||
|  |     self.out_dim = iCs[3] | ||
|  | 
 | ||
|  |   def forward(self, inputs): | ||
|  | 
 | ||
|  |     bottleneck = self.conv_1x1(inputs) | ||
|  |     bottleneck = self.conv_3x3(bottleneck) | ||
|  |     bottleneck = self.conv_1x4(bottleneck) | ||
|  | 
 | ||
|  |     if self.downsample is not None: | ||
|  |       residual = self.downsample(inputs) | ||
|  |     else: | ||
|  |       residual = inputs | ||
|  |     out = residual + bottleneck | ||
|  |     return F.relu(out, inplace=True) | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | class InferCifarResNet(nn.Module): | ||
|  | 
 | ||
|  |   def __init__(self, block_name, depth, xblocks, xchannels, num_classes, zero_init_residual): | ||
|  |     super(InferCifarResNet, self).__init__() | ||
|  | 
 | ||
|  |     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||
|  |     if block_name == 'ResNetBasicblock': | ||
|  |       block = ResNetBasicblock | ||
|  |       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||
|  |       layer_blocks = (depth - 2) // 6 | ||
|  |     elif block_name == 'ResNetBottleneck': | ||
|  |       block = ResNetBottleneck | ||
|  |       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||
|  |       layer_blocks = (depth - 2) // 9 | ||
|  |     else: | ||
|  |       raise ValueError('invalid block : {:}'.format(block_name)) | ||
|  |     assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks) | ||
|  | 
 | ||
|  |     self.message     = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||
|  |     self.num_classes = num_classes | ||
|  |     self.xchannels   = xchannels | ||
|  |     self.layers      = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||
|  |     last_channel_idx = 1 | ||
|  |     for stage in range(3): | ||
|  |       for iL in range(layer_blocks): | ||
|  |         num_conv = block.num_conv  | ||
|  |         iCs      = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1] | ||
|  |         stride   = 2 if stage > 0 and iL == 0 else 1 | ||
|  |         module   = block(iCs, stride) | ||
|  |         last_channel_idx += num_conv | ||
|  |         self.xchannels[last_channel_idx] = module.out_dim | ||
|  |         self.layers.append  ( module ) | ||
|  |         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride) | ||
|  |         if iL + 1 == xblocks[stage]: # reach the maximum depth | ||
|  |           out_channel = module.out_dim | ||
|  |           for iiL in range(iL+1, layer_blocks): | ||
|  |             last_channel_idx += num_conv | ||
|  |           self.xchannels[last_channel_idx] = module.out_dim | ||
|  |           break | ||
|  |    | ||
|  |     self.avgpool    = nn.AvgPool2d(8) | ||
|  |     self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||
|  |      | ||
|  |     self.apply(initialize_resnet) | ||
|  |     if zero_init_residual: | ||
|  |       for m in self.modules(): | ||
|  |         if isinstance(m, ResNetBasicblock): | ||
|  |           nn.init.constant_(m.conv_b.bn.weight, 0) | ||
|  |         elif isinstance(m, ResNetBottleneck): | ||
|  |           nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||
|  | 
 | ||
|  |   def get_message(self): | ||
|  |     return self.message | ||
|  | 
 | ||
|  |   def forward(self, inputs): | ||
|  |     x = inputs | ||
|  |     for i, layer in enumerate(self.layers): | ||
|  |       x = layer( x ) | ||
|  |     features = self.avgpool(x) | ||
|  |     features = features.view(features.size(0), -1) | ||
|  |     logits   = self.classifier(features) | ||
|  |     return features, logits |