| 
									
										
										
										
											2020-01-09 22:26:23 +11:00
										 |  |  | import math | 
					
						
							| 
									
										
										
										
											2019-09-28 18:24:47 +10:00
										 |  |  | import torch.nn as nn | 
					
						
							|  |  |  | import torch.nn.functional as F | 
					
						
							|  |  |  | from ..initialization import initialize_resnet | 
					
						
							|  |  |  | from ..SharedUtils    import additive_func | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ConvBNReLU(nn.Module): | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | 
					
						
							|  |  |  |     super(ConvBNReLU, self).__init__() | 
					
						
							|  |  |  |     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | 
					
						
							|  |  |  |     else       : self.avg = None | 
					
						
							|  |  |  |     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | 
					
						
							|  |  |  |     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | 
					
						
							|  |  |  |     else       : self.bn  = None | 
					
						
							|  |  |  |     if has_relu: self.relu = nn.ReLU(inplace=True) | 
					
						
							|  |  |  |     else       : self.relu = None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, inputs): | 
					
						
							|  |  |  |     if self.avg : out = self.avg( inputs ) | 
					
						
							|  |  |  |     else        : out = inputs | 
					
						
							|  |  |  |     conv = self.conv( out ) | 
					
						
							|  |  |  |     if self.bn  : out = self.bn( conv ) | 
					
						
							|  |  |  |     else        : out = conv | 
					
						
							|  |  |  |     if self.relu: out = self.relu( out ) | 
					
						
							|  |  |  |     else        : out = out | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return out | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ResNetBasicblock(nn.Module): | 
					
						
							|  |  |  |   num_conv  = 2 | 
					
						
							|  |  |  |   expansion = 1 | 
					
						
							|  |  |  |   def __init__(self, iCs, stride): | 
					
						
							|  |  |  |     super(ResNetBasicblock, self).__init__() | 
					
						
							|  |  |  |     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | 
					
						
							|  |  |  |     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | 
					
						
							|  |  |  |     assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs) | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | 
					
						
							|  |  |  |     self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | 
					
						
							|  |  |  |     residual_in = iCs[0] | 
					
						
							|  |  |  |     if stride == 2: | 
					
						
							|  |  |  |       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | 
					
						
							|  |  |  |       residual_in = iCs[2] | 
					
						
							|  |  |  |     elif iCs[0] != iCs[2]: | 
					
						
							|  |  |  |       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       self.downsample = None | 
					
						
							|  |  |  |     #self.out_dim  = max(residual_in, iCs[2]) | 
					
						
							|  |  |  |     self.out_dim  = iCs[2] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, inputs): | 
					
						
							|  |  |  |     basicblock = self.conv_a(inputs) | 
					
						
							|  |  |  |     basicblock = self.conv_b(basicblock) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if self.downsample is not None: | 
					
						
							|  |  |  |       residual = self.downsample(inputs) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       residual = inputs | 
					
						
							|  |  |  |     out = residual + basicblock | 
					
						
							|  |  |  |     return F.relu(out, inplace=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ResNetBottleneck(nn.Module): | 
					
						
							|  |  |  |   expansion = 4 | 
					
						
							|  |  |  |   num_conv  = 3 | 
					
						
							|  |  |  |   def __init__(self, iCs, stride): | 
					
						
							|  |  |  |     super(ResNetBottleneck, self).__init__() | 
					
						
							|  |  |  |     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | 
					
						
							|  |  |  |     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | 
					
						
							|  |  |  |     assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs) | 
					
						
							|  |  |  |     self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | 
					
						
							|  |  |  |     self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | 
					
						
							|  |  |  |     self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=False) | 
					
						
							|  |  |  |     residual_in = iCs[0] | 
					
						
							|  |  |  |     if stride == 2: | 
					
						
							|  |  |  |       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False) | 
					
						
							|  |  |  |       residual_in     = iCs[3] | 
					
						
							|  |  |  |     elif iCs[0] != iCs[3]: | 
					
						
							|  |  |  |       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False) | 
					
						
							|  |  |  |       residual_in     = iCs[3] | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       self.downsample = None | 
					
						
							|  |  |  |     #self.out_dim = max(residual_in, iCs[3]) | 
					
						
							|  |  |  |     self.out_dim = iCs[3] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, inputs): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     bottleneck = self.conv_1x1(inputs) | 
					
						
							|  |  |  |     bottleneck = self.conv_3x3(bottleneck) | 
					
						
							|  |  |  |     bottleneck = self.conv_1x4(bottleneck) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if self.downsample is not None: | 
					
						
							|  |  |  |       residual = self.downsample(inputs) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       residual = inputs | 
					
						
							|  |  |  |     out = residual + bottleneck | 
					
						
							|  |  |  |     return F.relu(out, inplace=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class InferWidthCifarResNet(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self, block_name, depth, xchannels, num_classes, zero_init_residual): | 
					
						
							|  |  |  |     super(InferWidthCifarResNet, self).__init__() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | 
					
						
							|  |  |  |     if block_name == 'ResNetBasicblock': | 
					
						
							|  |  |  |       block = ResNetBasicblock | 
					
						
							|  |  |  |       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | 
					
						
							|  |  |  |       layer_blocks = (depth - 2) // 6 | 
					
						
							|  |  |  |     elif block_name == 'ResNetBottleneck': | 
					
						
							|  |  |  |       block = ResNetBottleneck | 
					
						
							|  |  |  |       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | 
					
						
							|  |  |  |       layer_blocks = (depth - 2) // 9 | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       raise ValueError('invalid block : {:}'.format(block_name)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.message     = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | 
					
						
							|  |  |  |     self.num_classes = num_classes | 
					
						
							|  |  |  |     self.xchannels   = xchannels | 
					
						
							|  |  |  |     self.layers      = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | 
					
						
							|  |  |  |     last_channel_idx = 1 | 
					
						
							|  |  |  |     for stage in range(3): | 
					
						
							|  |  |  |       for iL in range(layer_blocks): | 
					
						
							|  |  |  |         num_conv = block.num_conv  | 
					
						
							|  |  |  |         iCs      = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1] | 
					
						
							|  |  |  |         stride   = 2 if stage > 0 and iL == 0 else 1 | 
					
						
							|  |  |  |         module   = block(iCs, stride) | 
					
						
							|  |  |  |         last_channel_idx += num_conv | 
					
						
							|  |  |  |         self.xchannels[last_channel_idx] = module.out_dim | 
					
						
							|  |  |  |         self.layers.append  ( module ) | 
					
						
							|  |  |  |         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride) | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |     self.avgpool    = nn.AvgPool2d(8) | 
					
						
							|  |  |  |     self.classifier = nn.Linear(self.xchannels[-1], num_classes) | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     self.apply(initialize_resnet) | 
					
						
							|  |  |  |     if zero_init_residual: | 
					
						
							|  |  |  |       for m in self.modules(): | 
					
						
							|  |  |  |         if isinstance(m, ResNetBasicblock): | 
					
						
							|  |  |  |           nn.init.constant_(m.conv_b.bn.weight, 0) | 
					
						
							|  |  |  |         elif isinstance(m, ResNetBottleneck): | 
					
						
							|  |  |  |           nn.init.constant_(m.conv_1x4.bn.weight, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_message(self): | 
					
						
							|  |  |  |     return self.message | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, inputs): | 
					
						
							|  |  |  |     x = inputs | 
					
						
							|  |  |  |     for i, layer in enumerate(self.layers): | 
					
						
							|  |  |  |       x = layer( x ) | 
					
						
							|  |  |  |     features = self.avgpool(x) | 
					
						
							|  |  |  |     features = features.view(features.size(0), -1) | 
					
						
							|  |  |  |     logits   = self.classifier(features) | 
					
						
							|  |  |  |     return features, logits |