| 
									
										
										
										
											2020-02-23 10:30:37 +11:00
										 |  |  | ##################################################### | 
					
						
							|  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | 
					
						
							|  |  |  | ##################################################### | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | # python exps/NAS-Bench-201/visualize.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth | 
					
						
							| 
									
										
										
										
											2020-02-23 10:30:37 +11:00
										 |  |  | ##################################################### | 
					
						
							| 
									
										
										
										
											2020-03-21 01:33:07 -07:00
										 |  |  | import sys, argparse | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  | from tqdm import tqdm | 
					
						
							| 
									
										
										
										
											2020-01-02 16:49:16 +11:00
										 |  |  | from collections import OrderedDict | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  | import numpy as np | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | from pathlib import Path | 
					
						
							|  |  |  | from collections import defaultdict | 
					
						
							|  |  |  | import matplotlib | 
					
						
							|  |  |  | import seaborn as sns | 
					
						
							|  |  |  | from mpl_toolkits.mplot3d import Axes3D | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | matplotlib.use("agg") | 
					
						
							|  |  |  | import matplotlib.pyplot as plt | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | 
					
						
							|  |  |  | if str(lib_dir) not in sys.path: | 
					
						
							|  |  |  |     sys.path.insert(0, str(lib_dir)) | 
					
						
							|  |  |  | from log_utils import time_string | 
					
						
							|  |  |  | from nas_201_api import NASBench201API as API | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def calculate_correlation(*vectors): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     matrix = [] | 
					
						
							|  |  |  |     for i, vectori in enumerate(vectors): | 
					
						
							|  |  |  |         x = [] | 
					
						
							|  |  |  |         for j, vectorj in enumerate(vectors): | 
					
						
							|  |  |  |             x.append(np.corrcoef(vectori, vectorj)[0, 1]) | 
					
						
							|  |  |  |         matrix.append(x) | 
					
						
							|  |  |  |     return np.array(matrix) | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def visualize_relative_ranking(vis_save_dir): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     print("\n" + "-" * 100) | 
					
						
							|  |  |  |     cifar010_cache_path = vis_save_dir / "{:}-cache-info.pth".format("cifar10") | 
					
						
							|  |  |  |     cifar100_cache_path = vis_save_dir / "{:}-cache-info.pth".format("cifar100") | 
					
						
							|  |  |  |     imagenet_cache_path = vis_save_dir / "{:}-cache-info.pth".format("ImageNet16-120") | 
					
						
							|  |  |  |     cifar010_info = torch.load(cifar010_cache_path) | 
					
						
							|  |  |  |     cifar100_info = torch.load(cifar100_cache_path) | 
					
						
							|  |  |  |     imagenet_info = torch.load(imagenet_cache_path) | 
					
						
							|  |  |  |     indexes = list(range(len(cifar010_info["params"]))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     print("{:} start to visualize relative ranking".format(time_string())) | 
					
						
							|  |  |  |     # maximum accuracy with ResNet-level params 11472 | 
					
						
							|  |  |  |     x_010_accs = [ | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         cifar010_info["test_accs"][i] | 
					
						
							|  |  |  |         if cifar010_info["params"][i] <= cifar010_info["params"][11472] | 
					
						
							|  |  |  |         else -1 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         for i in indexes | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  |     x_100_accs = [ | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         cifar100_info["test_accs"][i] | 
					
						
							|  |  |  |         if cifar100_info["params"][i] <= cifar100_info["params"][11472] | 
					
						
							|  |  |  |         else -1 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         for i in indexes | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  |     x_img_accs = [ | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         imagenet_info["test_accs"][i] | 
					
						
							|  |  |  |         if imagenet_info["params"][i] <= imagenet_info["params"][11472] | 
					
						
							|  |  |  |         else -1 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         for i in indexes | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     cifar010_ord_indexes = sorted(indexes, key=lambda i: cifar010_info["test_accs"][i]) | 
					
						
							|  |  |  |     cifar100_ord_indexes = sorted(indexes, key=lambda i: cifar100_info["test_accs"][i]) | 
					
						
							|  |  |  |     imagenet_ord_indexes = sorted(indexes, key=lambda i: imagenet_info["test_accs"][i]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     cifar100_labels, imagenet_labels = [], [] | 
					
						
							|  |  |  |     for idx in cifar010_ord_indexes: | 
					
						
							|  |  |  |         cifar100_labels.append(cifar100_ord_indexes.index(idx)) | 
					
						
							|  |  |  |         imagenet_labels.append(imagenet_ord_indexes.index(idx)) | 
					
						
							|  |  |  |     print("{:} prepare data done.".format(time_string())) | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  |     dpi, width, height = 300, 2600, 2600 | 
					
						
							|  |  |  |     figsize = width / float(dpi), height / float(dpi) | 
					
						
							|  |  |  |     LabelSize, LegendFontsize = 18, 18 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     resnet_scale, resnet_alpha = 120, 0.5 | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  |     fig = plt.figure(figsize=figsize) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ax = fig.add_subplot(111) | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  |     plt.xlim(min(indexes), max(indexes)) | 
					
						
							|  |  |  |     plt.ylim(min(indexes), max(indexes)) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     # plt.ylabel('y').set_rotation(0) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     plt.yticks( | 
					
						
							|  |  |  |         np.arange(min(indexes), max(indexes), max(indexes) // 6), | 
					
						
							|  |  |  |         fontsize=LegendFontsize, | 
					
						
							|  |  |  |         rotation="vertical", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     plt.xticks( | 
					
						
							|  |  |  |         np.arange(min(indexes), max(indexes), max(indexes) // 6), | 
					
						
							|  |  |  |         fontsize=LegendFontsize, | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     # ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8, label='CIFAR-100') | 
					
						
							|  |  |  |     # ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red'  , alpha=0.8, label='ImageNet-16-120') | 
					
						
							|  |  |  |     # ax.scatter(indexes, indexes        , marker='o', s=0.5, c='tab:blue' , alpha=0.8, label='CIFAR-10') | 
					
						
							|  |  |  |     ax.scatter(indexes, cifar100_labels, marker="^", s=0.5, c="tab:green", alpha=0.8) | 
					
						
							|  |  |  |     ax.scatter(indexes, imagenet_labels, marker="*", s=0.5, c="tab:red", alpha=0.8) | 
					
						
							|  |  |  |     ax.scatter(indexes, indexes, marker="o", s=0.5, c="tab:blue", alpha=0.8) | 
					
						
							|  |  |  |     ax.scatter([-1], [-1], marker="o", s=100, c="tab:blue", label="CIFAR-10") | 
					
						
							|  |  |  |     ax.scatter([-1], [-1], marker="^", s=100, c="tab:green", label="CIFAR-100") | 
					
						
							|  |  |  |     ax.scatter([-1], [-1], marker="*", s=100, c="tab:red", label="ImageNet-16-120") | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  |     plt.grid(zorder=0) | 
					
						
							|  |  |  |     ax.set_axisbelow(True) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     plt.legend(loc=0, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     ax.set_xlabel("architecture ranking in CIFAR-10", fontsize=LabelSize) | 
					
						
							|  |  |  |     ax.set_ylabel("architecture ranking", fontsize=LabelSize) | 
					
						
							|  |  |  |     save_path = (vis_save_dir / "relative-rank.pdf").resolve() | 
					
						
							|  |  |  |     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							|  |  |  |     save_path = (vis_save_dir / "relative-rank.png").resolve() | 
					
						
							|  |  |  |     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png") | 
					
						
							|  |  |  |     print("{:} save into {:}".format(time_string(), save_path)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # calculate correlation | 
					
						
							|  |  |  |     sns_size = 15 | 
					
						
							|  |  |  |     CoRelMatrix = calculate_correlation( | 
					
						
							|  |  |  |         cifar010_info["valid_accs"], | 
					
						
							|  |  |  |         cifar010_info["test_accs"], | 
					
						
							|  |  |  |         cifar100_info["valid_accs"], | 
					
						
							|  |  |  |         cifar100_info["test_accs"], | 
					
						
							|  |  |  |         imagenet_info["valid_accs"], | 
					
						
							|  |  |  |         imagenet_info["test_accs"], | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |     plt.axis("off") | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     h = sns.heatmap( | 
					
						
							|  |  |  |         CoRelMatrix, annot=True, annot_kws={"size": sns_size}, fmt=".3f", linewidths=0.5 | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     save_path = (vis_save_dir / "co-relation-all.pdf").resolve() | 
					
						
							|  |  |  |     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							|  |  |  |     print("{:} save into {:}".format(time_string(), save_path)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # calculate correlation | 
					
						
							|  |  |  |     acc_bars = [92, 93] | 
					
						
							|  |  |  |     for acc_bar in acc_bars: | 
					
						
							|  |  |  |         selected_indexes = [] | 
					
						
							|  |  |  |         for i, acc in enumerate(cifar010_info["test_accs"]): | 
					
						
							|  |  |  |             if acc > acc_bar: | 
					
						
							|  |  |  |                 selected_indexes.append(i) | 
					
						
							|  |  |  |         print("select {:} architectures".format(len(selected_indexes))) | 
					
						
							|  |  |  |         cifar010_valid_accs = np.array(cifar010_info["valid_accs"])[selected_indexes] | 
					
						
							|  |  |  |         cifar010_test_accs = np.array(cifar010_info["test_accs"])[selected_indexes] | 
					
						
							|  |  |  |         cifar100_valid_accs = np.array(cifar100_info["valid_accs"])[selected_indexes] | 
					
						
							|  |  |  |         cifar100_test_accs = np.array(cifar100_info["test_accs"])[selected_indexes] | 
					
						
							|  |  |  |         imagenet_valid_accs = np.array(imagenet_info["valid_accs"])[selected_indexes] | 
					
						
							|  |  |  |         imagenet_test_accs = np.array(imagenet_info["test_accs"])[selected_indexes] | 
					
						
							|  |  |  |         CoRelMatrix = calculate_correlation( | 
					
						
							|  |  |  |             cifar010_valid_accs, | 
					
						
							|  |  |  |             cifar010_test_accs, | 
					
						
							|  |  |  |             cifar100_valid_accs, | 
					
						
							|  |  |  |             cifar100_test_accs, | 
					
						
							|  |  |  |             imagenet_valid_accs, | 
					
						
							|  |  |  |             imagenet_test_accs, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |         plt.axis("off") | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         h = sns.heatmap( | 
					
						
							|  |  |  |             CoRelMatrix, | 
					
						
							|  |  |  |             annot=True, | 
					
						
							|  |  |  |             annot_kws={"size": sns_size}, | 
					
						
							|  |  |  |             fmt=".3f", | 
					
						
							|  |  |  |             linewidths=0.5, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         save_path = ( | 
					
						
							|  |  |  |             vis_save_dir / "co-relation-top-{:}.pdf".format(len(selected_indexes)) | 
					
						
							|  |  |  |         ).resolve() | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							|  |  |  |         print("{:} save into {:}".format(time_string(), save_path)) | 
					
						
							|  |  |  |     plt.close("all") | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | def visualize_info(meta_file, dataset, vis_save_dir): | 
					
						
							|  |  |  |     print("{:} start to visualize {:} information".format(time_string(), dataset)) | 
					
						
							|  |  |  |     cache_file_path = vis_save_dir / "{:}-cache-info.pth".format(dataset) | 
					
						
							|  |  |  |     if not cache_file_path.exists(): | 
					
						
							|  |  |  |         print("Do not find cache file : {:}".format(cache_file_path)) | 
					
						
							|  |  |  |         nas_bench = API(str(meta_file)) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         params, flops, train_accs, valid_accs, test_accs, otest_accs = ( | 
					
						
							|  |  |  |             [], | 
					
						
							|  |  |  |             [], | 
					
						
							|  |  |  |             [], | 
					
						
							|  |  |  |             [], | 
					
						
							|  |  |  |             [], | 
					
						
							|  |  |  |             [], | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         for index in range(len(nas_bench)): | 
					
						
							|  |  |  |             info = nas_bench.query_by_index(index, use_12epochs_result=False) | 
					
						
							|  |  |  |             resx = info.get_comput_costs(dataset) | 
					
						
							|  |  |  |             flop, param = resx["flops"], resx["params"] | 
					
						
							|  |  |  |             if dataset == "cifar10": | 
					
						
							|  |  |  |                 res = info.get_metrics("cifar10", "train") | 
					
						
							|  |  |  |                 train_acc = res["accuracy"] | 
					
						
							|  |  |  |                 res = info.get_metrics("cifar10-valid", "x-valid") | 
					
						
							|  |  |  |                 valid_acc = res["accuracy"] | 
					
						
							|  |  |  |                 res = info.get_metrics("cifar10", "ori-test") | 
					
						
							|  |  |  |                 test_acc = res["accuracy"] | 
					
						
							|  |  |  |                 res = info.get_metrics("cifar10", "ori-test") | 
					
						
							|  |  |  |                 otest_acc = res["accuracy"] | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 res = info.get_metrics(dataset, "train") | 
					
						
							|  |  |  |                 train_acc = res["accuracy"] | 
					
						
							|  |  |  |                 res = info.get_metrics(dataset, "x-valid") | 
					
						
							|  |  |  |                 valid_acc = res["accuracy"] | 
					
						
							|  |  |  |                 res = info.get_metrics(dataset, "x-test") | 
					
						
							|  |  |  |                 test_acc = res["accuracy"] | 
					
						
							|  |  |  |                 res = info.get_metrics(dataset, "ori-test") | 
					
						
							|  |  |  |                 otest_acc = res["accuracy"] | 
					
						
							|  |  |  |             if index == 11472:  # resnet | 
					
						
							|  |  |  |                 resnet = { | 
					
						
							|  |  |  |                     "params": param, | 
					
						
							|  |  |  |                     "flops": flop, | 
					
						
							|  |  |  |                     "index": 11472, | 
					
						
							|  |  |  |                     "train_acc": train_acc, | 
					
						
							|  |  |  |                     "valid_acc": valid_acc, | 
					
						
							|  |  |  |                     "test_acc": test_acc, | 
					
						
							|  |  |  |                     "otest_acc": otest_acc, | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             flops.append(flop) | 
					
						
							|  |  |  |             params.append(param) | 
					
						
							|  |  |  |             train_accs.append(train_acc) | 
					
						
							|  |  |  |             valid_accs.append(valid_acc) | 
					
						
							|  |  |  |             test_accs.append(test_acc) | 
					
						
							|  |  |  |             otest_accs.append(otest_acc) | 
					
						
							|  |  |  |         # resnet = {'params': 0.559, 'flops': 78.56, 'index': 11472, 'train_acc': 99.99, 'valid_acc': 90.84, 'test_acc': 93.97} | 
					
						
							|  |  |  |         info = { | 
					
						
							|  |  |  |             "params": params, | 
					
						
							|  |  |  |             "flops": flops, | 
					
						
							|  |  |  |             "train_accs": train_accs, | 
					
						
							|  |  |  |             "valid_accs": valid_accs, | 
					
						
							|  |  |  |             "test_accs": test_accs, | 
					
						
							|  |  |  |             "otest_accs": otest_accs, | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         info["resnet"] = resnet | 
					
						
							|  |  |  |         torch.save(info, cache_file_path) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         print("Find cache file : {:}".format(cache_file_path)) | 
					
						
							|  |  |  |         info = torch.load(cache_file_path) | 
					
						
							|  |  |  |         params, flops, train_accs, valid_accs, test_accs, otest_accs = ( | 
					
						
							|  |  |  |             info["params"], | 
					
						
							|  |  |  |             info["flops"], | 
					
						
							|  |  |  |             info["train_accs"], | 
					
						
							|  |  |  |             info["valid_accs"], | 
					
						
							|  |  |  |             info["test_accs"], | 
					
						
							|  |  |  |             info["otest_accs"], | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         resnet = info["resnet"] | 
					
						
							|  |  |  |     print("{:} collect data done.".format(time_string())) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     indexes = list(range(len(params))) | 
					
						
							|  |  |  |     dpi, width, height = 300, 2600, 2600 | 
					
						
							|  |  |  |     figsize = width / float(dpi), height / float(dpi) | 
					
						
							|  |  |  |     LabelSize, LegendFontsize = 22, 22 | 
					
						
							|  |  |  |     resnet_scale, resnet_alpha = 120, 0.5 | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |     ax = fig.add_subplot(111) | 
					
						
							|  |  |  |     plt.xticks(np.arange(0, 1.6, 0.3), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     if dataset == "cifar10": | 
					
						
							|  |  |  |         plt.ylim(50, 100) | 
					
						
							|  |  |  |         plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     elif dataset == "cifar100": | 
					
						
							|  |  |  |         plt.ylim(25, 75) | 
					
						
							|  |  |  |         plt.yticks(np.arange(25, 76, 10), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         plt.ylim(0, 50) | 
					
						
							|  |  |  |         plt.yticks(np.arange(0, 51, 10), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     ax.scatter(params, valid_accs, marker="o", s=0.5, c="tab:blue") | 
					
						
							|  |  |  |     ax.scatter( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         [resnet["params"]], | 
					
						
							|  |  |  |         [resnet["valid_acc"]], | 
					
						
							|  |  |  |         marker="*", | 
					
						
							|  |  |  |         s=resnet_scale, | 
					
						
							|  |  |  |         c="tab:orange", | 
					
						
							|  |  |  |         label="resnet", | 
					
						
							|  |  |  |         alpha=0.4, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     plt.grid(zorder=0) | 
					
						
							|  |  |  |     ax.set_axisbelow(True) | 
					
						
							|  |  |  |     plt.legend(loc=4, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     ax.set_xlabel("#parameters (MB)", fontsize=LabelSize) | 
					
						
							|  |  |  |     ax.set_ylabel("the validation accuracy (%)", fontsize=LabelSize) | 
					
						
							|  |  |  |     save_path = (vis_save_dir / "{:}-param-vs-valid.pdf".format(dataset)).resolve() | 
					
						
							|  |  |  |     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							|  |  |  |     save_path = (vis_save_dir / "{:}-param-vs-valid.png".format(dataset)).resolve() | 
					
						
							|  |  |  |     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png") | 
					
						
							|  |  |  |     print("{:} save into {:}".format(time_string(), save_path)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |     ax = fig.add_subplot(111) | 
					
						
							|  |  |  |     plt.xticks(np.arange(0, 1.6, 0.3), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     if dataset == "cifar10": | 
					
						
							|  |  |  |         plt.ylim(50, 100) | 
					
						
							|  |  |  |         plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     elif dataset == "cifar100": | 
					
						
							|  |  |  |         plt.ylim(25, 75) | 
					
						
							|  |  |  |         plt.yticks(np.arange(25, 76, 10), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         plt.ylim(0, 50) | 
					
						
							|  |  |  |         plt.yticks(np.arange(0, 51, 10), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     ax.scatter(params, test_accs, marker="o", s=0.5, c="tab:blue") | 
					
						
							|  |  |  |     ax.scatter( | 
					
						
							|  |  |  |         [resnet["params"]], | 
					
						
							|  |  |  |         [resnet["test_acc"]], | 
					
						
							|  |  |  |         marker="*", | 
					
						
							|  |  |  |         s=resnet_scale, | 
					
						
							|  |  |  |         c="tab:orange", | 
					
						
							|  |  |  |         label="resnet", | 
					
						
							|  |  |  |         alpha=resnet_alpha, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     plt.grid() | 
					
						
							|  |  |  |     ax.set_axisbelow(True) | 
					
						
							|  |  |  |     plt.legend(loc=4, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     ax.set_xlabel("#parameters (MB)", fontsize=LabelSize) | 
					
						
							|  |  |  |     ax.set_ylabel("the test accuracy (%)", fontsize=LabelSize) | 
					
						
							|  |  |  |     save_path = (vis_save_dir / "{:}-param-vs-test.pdf".format(dataset)).resolve() | 
					
						
							|  |  |  |     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							|  |  |  |     save_path = (vis_save_dir / "{:}-param-vs-test.png".format(dataset)).resolve() | 
					
						
							|  |  |  |     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png") | 
					
						
							|  |  |  |     print("{:} save into {:}".format(time_string(), save_path)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |     ax = fig.add_subplot(111) | 
					
						
							|  |  |  |     plt.xticks(np.arange(0, 1.6, 0.3), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     if dataset == "cifar10": | 
					
						
							|  |  |  |         plt.ylim(50, 100) | 
					
						
							|  |  |  |         plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     elif dataset == "cifar100": | 
					
						
							|  |  |  |         plt.ylim(20, 100) | 
					
						
							|  |  |  |         plt.yticks(np.arange(20, 101, 10), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         plt.ylim(25, 76) | 
					
						
							|  |  |  |         plt.yticks(np.arange(25, 76, 10), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     ax.scatter(params, train_accs, marker="o", s=0.5, c="tab:blue") | 
					
						
							|  |  |  |     ax.scatter( | 
					
						
							|  |  |  |         [resnet["params"]], | 
					
						
							|  |  |  |         [resnet["train_acc"]], | 
					
						
							|  |  |  |         marker="*", | 
					
						
							|  |  |  |         s=resnet_scale, | 
					
						
							|  |  |  |         c="tab:orange", | 
					
						
							|  |  |  |         label="resnet", | 
					
						
							|  |  |  |         alpha=resnet_alpha, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     plt.grid() | 
					
						
							|  |  |  |     ax.set_axisbelow(True) | 
					
						
							|  |  |  |     plt.legend(loc=4, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     ax.set_xlabel("#parameters (MB)", fontsize=LabelSize) | 
					
						
							|  |  |  |     ax.set_ylabel("the trarining accuracy (%)", fontsize=LabelSize) | 
					
						
							|  |  |  |     save_path = (vis_save_dir / "{:}-param-vs-train.pdf".format(dataset)).resolve() | 
					
						
							|  |  |  |     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							|  |  |  |     save_path = (vis_save_dir / "{:}-param-vs-train.png".format(dataset)).resolve() | 
					
						
							|  |  |  |     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png") | 
					
						
							|  |  |  |     print("{:} save into {:}".format(time_string(), save_path)) | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |     ax = fig.add_subplot(111) | 
					
						
							|  |  |  |     plt.xlim(0, max(indexes)) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     plt.xticks( | 
					
						
							|  |  |  |         np.arange(min(indexes), max(indexes), max(indexes) // 5), | 
					
						
							|  |  |  |         fontsize=LegendFontsize, | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     if dataset == "cifar10": | 
					
						
							|  |  |  |         plt.ylim(50, 100) | 
					
						
							|  |  |  |         plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     elif dataset == "cifar100": | 
					
						
							|  |  |  |         plt.ylim(25, 75) | 
					
						
							|  |  |  |         plt.yticks(np.arange(25, 76, 10), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         plt.ylim(0, 50) | 
					
						
							|  |  |  |         plt.yticks(np.arange(0, 51, 10), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     ax.scatter(indexes, test_accs, marker="o", s=0.5, c="tab:blue") | 
					
						
							|  |  |  |     ax.scatter( | 
					
						
							|  |  |  |         [resnet["index"]], | 
					
						
							|  |  |  |         [resnet["test_acc"]], | 
					
						
							|  |  |  |         marker="*", | 
					
						
							|  |  |  |         s=resnet_scale, | 
					
						
							|  |  |  |         c="tab:orange", | 
					
						
							|  |  |  |         label="resnet", | 
					
						
							|  |  |  |         alpha=resnet_alpha, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     plt.grid() | 
					
						
							|  |  |  |     ax.set_axisbelow(True) | 
					
						
							|  |  |  |     plt.legend(loc=4, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     ax.set_xlabel("architecture ID", fontsize=LabelSize) | 
					
						
							|  |  |  |     ax.set_ylabel("the test accuracy (%)", fontsize=LabelSize) | 
					
						
							|  |  |  |     save_path = (vis_save_dir / "{:}-test-over-ID.pdf".format(dataset)).resolve() | 
					
						
							|  |  |  |     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							|  |  |  |     save_path = (vis_save_dir / "{:}-test-over-ID.png".format(dataset)).resolve() | 
					
						
							|  |  |  |     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png") | 
					
						
							|  |  |  |     print("{:} save into {:}".format(time_string(), save_path)) | 
					
						
							|  |  |  |     plt.close("all") | 
					
						
							| 
									
										
										
										
											2019-12-29 20:17:26 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | def visualize_rank_over_time(meta_file, vis_save_dir): | 
					
						
							|  |  |  |     print("\n" + "-" * 150) | 
					
						
							|  |  |  |     vis_save_dir.mkdir(parents=True, exist_ok=True) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     print( | 
					
						
							|  |  |  |         "{:} start to visualize rank-over-time into {:}".format( | 
					
						
							|  |  |  |             time_string(), vis_save_dir | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     cache_file_path = vis_save_dir / "rank-over-time-cache-info.pth" | 
					
						
							|  |  |  |     if not cache_file_path.exists(): | 
					
						
							|  |  |  |         print("Do not find cache file : {:}".format(cache_file_path)) | 
					
						
							|  |  |  |         nas_bench = API(str(meta_file)) | 
					
						
							|  |  |  |         print("{:} load nas_bench done".format(time_string())) | 
					
						
							|  |  |  |         params, flops, train_accs, valid_accs, test_accs, otest_accs = ( | 
					
						
							|  |  |  |             [], | 
					
						
							|  |  |  |             [], | 
					
						
							|  |  |  |             defaultdict(list), | 
					
						
							|  |  |  |             defaultdict(list), | 
					
						
							|  |  |  |             defaultdict(list), | 
					
						
							|  |  |  |             defaultdict(list), | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         # for iepoch in range(200): for index in range( len(nas_bench) ): | 
					
						
							|  |  |  |         for index in tqdm(range(len(nas_bench))): | 
					
						
							|  |  |  |             info = nas_bench.query_by_index(index, use_12epochs_result=False) | 
					
						
							|  |  |  |             for iepoch in range(200): | 
					
						
							|  |  |  |                 res = info.get_metrics("cifar10", "train", iepoch) | 
					
						
							|  |  |  |                 train_acc = res["accuracy"] | 
					
						
							|  |  |  |                 res = info.get_metrics("cifar10-valid", "x-valid", iepoch) | 
					
						
							|  |  |  |                 valid_acc = res["accuracy"] | 
					
						
							|  |  |  |                 res = info.get_metrics("cifar10", "ori-test", iepoch) | 
					
						
							|  |  |  |                 test_acc = res["accuracy"] | 
					
						
							|  |  |  |                 res = info.get_metrics("cifar10", "ori-test", iepoch) | 
					
						
							|  |  |  |                 otest_acc = res["accuracy"] | 
					
						
							|  |  |  |                 train_accs[iepoch].append(train_acc) | 
					
						
							|  |  |  |                 valid_accs[iepoch].append(valid_acc) | 
					
						
							|  |  |  |                 test_accs[iepoch].append(test_acc) | 
					
						
							|  |  |  |                 otest_accs[iepoch].append(otest_acc) | 
					
						
							|  |  |  |                 if iepoch == 0: | 
					
						
							|  |  |  |                     res = info.get_comput_costs("cifar10") | 
					
						
							|  |  |  |                     flop, param = res["flops"], res["params"] | 
					
						
							|  |  |  |                     flops.append(flop) | 
					
						
							|  |  |  |                     params.append(param) | 
					
						
							|  |  |  |         info = { | 
					
						
							|  |  |  |             "params": params, | 
					
						
							|  |  |  |             "flops": flops, | 
					
						
							|  |  |  |             "train_accs": train_accs, | 
					
						
							|  |  |  |             "valid_accs": valid_accs, | 
					
						
							|  |  |  |             "test_accs": test_accs, | 
					
						
							|  |  |  |             "otest_accs": otest_accs, | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         torch.save(info, cache_file_path) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         print("Find cache file : {:}".format(cache_file_path)) | 
					
						
							|  |  |  |         info = torch.load(cache_file_path) | 
					
						
							|  |  |  |         params, flops, train_accs, valid_accs, test_accs, otest_accs = ( | 
					
						
							|  |  |  |             info["params"], | 
					
						
							|  |  |  |             info["flops"], | 
					
						
							|  |  |  |             info["train_accs"], | 
					
						
							|  |  |  |             info["valid_accs"], | 
					
						
							|  |  |  |             info["test_accs"], | 
					
						
							|  |  |  |             info["otest_accs"], | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     print("{:} collect data done.".format(time_string())) | 
					
						
							|  |  |  |     # selected_epochs = [0, 100, 150, 180, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199] | 
					
						
							|  |  |  |     selected_epochs = list(range(200)) | 
					
						
							|  |  |  |     x_xtests = test_accs[199] | 
					
						
							|  |  |  |     indexes = list(range(len(x_xtests))) | 
					
						
							|  |  |  |     ord_idxs = sorted(indexes, key=lambda i: x_xtests[i]) | 
					
						
							|  |  |  |     for sepoch in selected_epochs: | 
					
						
							|  |  |  |         x_valids = valid_accs[sepoch] | 
					
						
							|  |  |  |         valid_ord_idxs = sorted(indexes, key=lambda i: x_valids[i]) | 
					
						
							|  |  |  |         valid_ord_lbls = [] | 
					
						
							|  |  |  |         for idx in ord_idxs: | 
					
						
							|  |  |  |             valid_ord_lbls.append(valid_ord_idxs.index(idx)) | 
					
						
							|  |  |  |         # labeled data | 
					
						
							|  |  |  |         dpi, width, height = 300, 2600, 2600 | 
					
						
							|  |  |  |         figsize = width / float(dpi), height / float(dpi) | 
					
						
							|  |  |  |         LabelSize, LegendFontsize = 18, 18 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |         ax = fig.add_subplot(111) | 
					
						
							|  |  |  |         plt.xlim(min(indexes), max(indexes)) | 
					
						
							|  |  |  |         plt.ylim(min(indexes), max(indexes)) | 
					
						
							|  |  |  |         plt.yticks( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             np.arange(min(indexes), max(indexes), max(indexes) // 6), | 
					
						
							|  |  |  |             fontsize=LegendFontsize, | 
					
						
							|  |  |  |             rotation="vertical", | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         plt.xticks( | 
					
						
							|  |  |  |             np.arange(min(indexes), max(indexes), max(indexes) // 6), | 
					
						
							|  |  |  |             fontsize=LegendFontsize, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ) | 
					
						
							|  |  |  |         ax.scatter(indexes, valid_ord_lbls, marker="^", s=0.5, c="tab:green", alpha=0.8) | 
					
						
							|  |  |  |         ax.scatter(indexes, indexes, marker="o", s=0.5, c="tab:blue", alpha=0.8) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         ax.scatter( | 
					
						
							|  |  |  |             [-1], [-1], marker="^", s=100, c="tab:green", label="CIFAR-10 validation" | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ax.scatter([-1], [-1], marker="o", s=100, c="tab:blue", label="CIFAR-10 test") | 
					
						
							|  |  |  |         plt.grid(zorder=0) | 
					
						
							|  |  |  |         ax.set_axisbelow(True) | 
					
						
							|  |  |  |         plt.legend(loc="upper left", fontsize=LegendFontsize) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         ax.set_xlabel( | 
					
						
							|  |  |  |             "architecture ranking in the final test accuracy", fontsize=LabelSize | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         ax.set_ylabel("architecture ranking in the validation set", fontsize=LabelSize) | 
					
						
							|  |  |  |         save_path = (vis_save_dir / "time-{:03d}.pdf".format(sepoch)).resolve() | 
					
						
							|  |  |  |         fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							|  |  |  |         save_path = (vis_save_dir / "time-{:03d}.png".format(sepoch)).resolve() | 
					
						
							|  |  |  |         fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png") | 
					
						
							|  |  |  |         print("{:} save into {:}".format(time_string(), save_path)) | 
					
						
							|  |  |  |         plt.close("all") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def write_video(save_dir): | 
					
						
							|  |  |  |     import cv2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     video_save_path = save_dir / "time.avi" | 
					
						
							|  |  |  |     print("{:} start create video for {:}".format(time_string(), video_save_path)) | 
					
						
							|  |  |  |     images = sorted(list(save_dir.glob("time-*.png"))) | 
					
						
							|  |  |  |     ximage = cv2.imread(str(images[0])) | 
					
						
							|  |  |  |     # shape  = (ximage.shape[1], ximage.shape[0]) | 
					
						
							|  |  |  |     shape = (1000, 1000) | 
					
						
							|  |  |  |     # writer = cv2.VideoWriter(str(video_save_path), cv2.VideoWriter_fourcc(*"MJPG"), 25, shape) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     writer = cv2.VideoWriter( | 
					
						
							|  |  |  |         str(video_save_path), cv2.VideoWriter_fourcc(*"MJPG"), 5, shape | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     for idx, image in enumerate(images): | 
					
						
							|  |  |  |         ximage = cv2.imread(str(image)) | 
					
						
							|  |  |  |         _image = cv2.resize(ximage, shape) | 
					
						
							|  |  |  |         writer.write(_image) | 
					
						
							|  |  |  |     writer.release() | 
					
						
							|  |  |  |     print("write video [{:} frames] into {:}".format(len(images), video_save_path)) | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | def plot_results_nas_v2(api, dataset_xset_a, dataset_xset_b, root, file_name, y_lims): | 
					
						
							|  |  |  |     # print ('root-path={:}, dataset={:}, xset={:}'.format(root, dataset, xset)) | 
					
						
							|  |  |  |     print("root-path : {:} and {:}".format(dataset_xset_a, dataset_xset_b)) | 
					
						
							|  |  |  |     checkpoints = [ | 
					
						
							|  |  |  |         "./output/search-cell-nas-bench-201/R-EA-cifar10/results.pth", | 
					
						
							|  |  |  |         "./output/search-cell-nas-bench-201/REINFORCE-cifar10/results.pth", | 
					
						
							|  |  |  |         "./output/search-cell-nas-bench-201/RAND-cifar10/results.pth", | 
					
						
							|  |  |  |         "./output/search-cell-nas-bench-201/BOHB-cifar10/results.pth", | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  |     legends, indexes = ["REA", "REINFORCE", "RANDOM", "BOHB"], None | 
					
						
							|  |  |  |     All_Accs_A, All_Accs_B = OrderedDict(), OrderedDict() | 
					
						
							|  |  |  |     for legend, checkpoint in zip(legends, checkpoints): | 
					
						
							|  |  |  |         all_indexes = torch.load(checkpoint, map_location="cpu") | 
					
						
							|  |  |  |         accuracies_A, accuracies_B = [], [] | 
					
						
							|  |  |  |         accuracies = [] | 
					
						
							|  |  |  |         for x in all_indexes: | 
					
						
							|  |  |  |             info = api.arch2infos_full[x] | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             metrics = info.get_metrics( | 
					
						
							|  |  |  |                 dataset_xset_a[0], dataset_xset_a[1], None, False | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             accuracies_A.append(metrics["accuracy"]) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             metrics = info.get_metrics( | 
					
						
							|  |  |  |                 dataset_xset_b[0], dataset_xset_b[1], None, False | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             accuracies_B.append(metrics["accuracy"]) | 
					
						
							|  |  |  |             accuracies.append((accuracies_A[-1], accuracies_B[-1])) | 
					
						
							|  |  |  |         if indexes is None: | 
					
						
							|  |  |  |             indexes = list(range(len(all_indexes))) | 
					
						
							|  |  |  |         accuracies = sorted(accuracies) | 
					
						
							|  |  |  |         All_Accs_A[legend] = [x[0] for x in accuracies] | 
					
						
							|  |  |  |         All_Accs_B[legend] = [x[1] for x in accuracies] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     color_set = ["r", "b", "g", "c", "m", "y", "k"] | 
					
						
							|  |  |  |     dpi, width, height = 300, 3400, 2600 | 
					
						
							|  |  |  |     LabelSize, LegendFontsize = 28, 28 | 
					
						
							|  |  |  |     figsize = width / float(dpi), height / float(dpi) | 
					
						
							|  |  |  |     fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |     x_axis = np.arange(0, 600) | 
					
						
							|  |  |  |     plt.xlim(0, max(indexes)) | 
					
						
							|  |  |  |     plt.ylim(y_lims[0], y_lims[1]) | 
					
						
							|  |  |  |     interval_x, interval_y = 100, y_lims[2] | 
					
						
							|  |  |  |     plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.yticks(np.arange(y_lims[0], y_lims[1], interval_y), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.grid() | 
					
						
							|  |  |  |     plt.xlabel("The index of runs", fontsize=LabelSize) | 
					
						
							|  |  |  |     plt.ylabel("The accuracy (%)", fontsize=LabelSize) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for idx, legend in enumerate(legends): | 
					
						
							|  |  |  |         plt.plot( | 
					
						
							|  |  |  |             indexes, | 
					
						
							|  |  |  |             All_Accs_B[legend], | 
					
						
							|  |  |  |             color=color_set[idx], | 
					
						
							|  |  |  |             linestyle="--", | 
					
						
							|  |  |  |             label="{:}".format(legend), | 
					
						
							|  |  |  |             lw=1, | 
					
						
							|  |  |  |             alpha=0.5, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         plt.plot(indexes, All_Accs_A[legend], color=color_set[idx], linestyle="-", lw=1) | 
					
						
							|  |  |  |         for All_Accs in [All_Accs_A, All_Accs_B]: | 
					
						
							|  |  |  |             print( | 
					
						
							|  |  |  |                 "{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}".format( | 
					
						
							|  |  |  |                     legend, | 
					
						
							|  |  |  |                     np.mean(All_Accs[legend]), | 
					
						
							|  |  |  |                     np.std(All_Accs[legend]), | 
					
						
							|  |  |  |                     np.mean(All_Accs[legend]), | 
					
						
							|  |  |  |                     np.std(All_Accs[legend]), | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |     plt.legend(loc=4, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     save_path = root / "{:}".format(file_name) | 
					
						
							|  |  |  |     print("save figure into {:}\n".format(save_path)) | 
					
						
							|  |  |  |     fig.savefig(str(save_path), dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-01-01 22:51:00 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | def plot_results_nas(api, dataset, xset, root, file_name, y_lims): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     print("root-path={:}, dataset={:}, xset={:}".format(root, dataset, xset)) | 
					
						
							|  |  |  |     checkpoints = [ | 
					
						
							|  |  |  |         "./output/search-cell-nas-bench-201/R-EA-cifar10/results.pth", | 
					
						
							|  |  |  |         "./output/search-cell-nas-bench-201/REINFORCE-cifar10/results.pth", | 
					
						
							|  |  |  |         "./output/search-cell-nas-bench-201/RAND-cifar10/results.pth", | 
					
						
							|  |  |  |         "./output/search-cell-nas-bench-201/BOHB-cifar10/results.pth", | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  |     legends, indexes = ["REA", "REINFORCE", "RANDOM", "BOHB"], None | 
					
						
							|  |  |  |     All_Accs = OrderedDict() | 
					
						
							|  |  |  |     for legend, checkpoint in zip(legends, checkpoints): | 
					
						
							|  |  |  |         all_indexes = torch.load(checkpoint, map_location="cpu") | 
					
						
							|  |  |  |         accuracies = [] | 
					
						
							|  |  |  |         for x in all_indexes: | 
					
						
							|  |  |  |             info = api.arch2infos_full[x] | 
					
						
							|  |  |  |             metrics = info.get_metrics(dataset, xset, None, False) | 
					
						
							|  |  |  |             accuracies.append(metrics["accuracy"]) | 
					
						
							|  |  |  |         if indexes is None: | 
					
						
							|  |  |  |             indexes = list(range(len(all_indexes))) | 
					
						
							|  |  |  |         All_Accs[legend] = sorted(accuracies) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     color_set = ["r", "b", "g", "c", "m", "y", "k"] | 
					
						
							|  |  |  |     dpi, width, height = 300, 3400, 2600 | 
					
						
							|  |  |  |     LabelSize, LegendFontsize = 28, 28 | 
					
						
							|  |  |  |     figsize = width / float(dpi), height / float(dpi) | 
					
						
							|  |  |  |     fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |     x_axis = np.arange(0, 600) | 
					
						
							|  |  |  |     plt.xlim(0, max(indexes)) | 
					
						
							|  |  |  |     plt.ylim(y_lims[0], y_lims[1]) | 
					
						
							|  |  |  |     interval_x, interval_y = 100, y_lims[2] | 
					
						
							|  |  |  |     plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.yticks(np.arange(y_lims[0], y_lims[1], interval_y), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.grid() | 
					
						
							|  |  |  |     plt.xlabel("The index of runs", fontsize=LabelSize) | 
					
						
							|  |  |  |     plt.ylabel("The accuracy (%)", fontsize=LabelSize) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for idx, legend in enumerate(legends): | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         plt.plot( | 
					
						
							|  |  |  |             indexes, | 
					
						
							|  |  |  |             All_Accs[legend], | 
					
						
							|  |  |  |             color=color_set[idx], | 
					
						
							|  |  |  |             linestyle="-", | 
					
						
							|  |  |  |             label="{:}".format(legend), | 
					
						
							|  |  |  |             lw=2, | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         print( | 
					
						
							|  |  |  |             "{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}".format( | 
					
						
							|  |  |  |                 legend, | 
					
						
							|  |  |  |                 np.mean(All_Accs[legend]), | 
					
						
							|  |  |  |                 np.std(All_Accs[legend]), | 
					
						
							|  |  |  |                 np.mean(All_Accs[legend]), | 
					
						
							|  |  |  |                 np.std(All_Accs[legend]), | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     plt.legend(loc=4, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     save_path = root / "{:}-{:}-{:}".format(dataset, xset, file_name) | 
					
						
							|  |  |  |     print("save figure into {:}\n".format(save_path)) | 
					
						
							|  |  |  |     fig.savefig(str(save_path), dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							| 
									
										
										
										
											2020-01-01 22:51:00 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def just_show(api): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     xtimes = { | 
					
						
							|  |  |  |         "RSPS": [8082.5, 7794.2, 8144.7], | 
					
						
							|  |  |  |         "DARTS-V1": [11582.1, 11347.0, 11948.2], | 
					
						
							|  |  |  |         "DARTS-V2": [35694.7, 36132.7, 35518.0], | 
					
						
							|  |  |  |         "GDAS": [31334.1, 31478.6, 32016.7], | 
					
						
							|  |  |  |         "SETN": [33528.8, 33831.5, 35058.3], | 
					
						
							|  |  |  |         "ENAS": [14340.2, 13817.3, 14018.9], | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     for xkey, xlist in xtimes.items(): | 
					
						
							|  |  |  |         xlist = np.array(xlist) | 
					
						
							|  |  |  |         print("{:4s} : mean-time={:.2f} s".format(xkey, xlist.mean())) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     xpaths = { | 
					
						
							|  |  |  |         "RSPS": "output/search-cell-nas-bench-201/RANDOM-NAS-cifar10/checkpoint/", | 
					
						
							|  |  |  |         "DARTS-V1": "output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/", | 
					
						
							|  |  |  |         "DARTS-V2": "output/search-cell-nas-bench-201/DARTS-V2-cifar10/checkpoint/", | 
					
						
							|  |  |  |         "GDAS": "output/search-cell-nas-bench-201/GDAS-cifar10/checkpoint/", | 
					
						
							|  |  |  |         "SETN": "output/search-cell-nas-bench-201/SETN-cifar10/checkpoint/", | 
					
						
							|  |  |  |         "ENAS": "output/search-cell-nas-bench-201/ENAS-cifar10/checkpoint/", | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     xseeds = { | 
					
						
							|  |  |  |         "RSPS": [5349, 59613, 5983], | 
					
						
							|  |  |  |         "DARTS-V1": [11416, 72873, 81184], | 
					
						
							|  |  |  |         "DARTS-V2": [43330, 79405, 79423], | 
					
						
							|  |  |  |         "GDAS": [19677, 884, 95950], | 
					
						
							|  |  |  |         "SETN": [20518, 61817, 89144], | 
					
						
							|  |  |  |         "ENAS": [3231, 34238, 96929], | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def get_accs(xdata, index=-1): | 
					
						
							|  |  |  |         if index == -1: | 
					
						
							|  |  |  |             epochs = xdata["epoch"] | 
					
						
							|  |  |  |             genotype = xdata["genotypes"][epochs - 1] | 
					
						
							|  |  |  |             index = api.query_index_by_arch(genotype) | 
					
						
							|  |  |  |         pairs = [ | 
					
						
							|  |  |  |             ("cifar10-valid", "x-valid"), | 
					
						
							|  |  |  |             ("cifar10", "ori-test"), | 
					
						
							|  |  |  |             ("cifar100", "x-valid"), | 
					
						
							|  |  |  |             ("cifar100", "x-test"), | 
					
						
							|  |  |  |             ("ImageNet16-120", "x-valid"), | 
					
						
							|  |  |  |             ("ImageNet16-120", "x-test"), | 
					
						
							|  |  |  |         ] | 
					
						
							|  |  |  |         xresults = [] | 
					
						
							|  |  |  |         for dataset, xset in pairs: | 
					
						
							|  |  |  |             metrics = api.arch2infos_full[index].get_metrics(dataset, xset, None, False) | 
					
						
							|  |  |  |             xresults.append(metrics["accuracy"]) | 
					
						
							|  |  |  |         return xresults | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for xkey in xpaths.keys(): | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         all_paths = [ | 
					
						
							|  |  |  |             "{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey] | 
					
						
							|  |  |  |         ] | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         all_datas = [torch.load(xpath) for xpath in all_paths] | 
					
						
							|  |  |  |         accyss = [get_accs(xdatas) for xdatas in all_datas] | 
					
						
							|  |  |  |         accyss = np.array(accyss) | 
					
						
							|  |  |  |         print("\nxkey = {:}".format(xkey)) | 
					
						
							|  |  |  |         for i in range(accyss.shape[1]): | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             print( | 
					
						
							|  |  |  |                 "---->>>> {:.2f}$\\pm${:.2f}".format( | 
					
						
							|  |  |  |                     accyss[:, i].mean(), accyss[:, i].std() | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     print("\n{:}".format(get_accs(None, 11472)))  # resnet | 
					
						
							|  |  |  |     pairs = [ | 
					
						
							|  |  |  |         ("cifar10-valid", "x-valid"), | 
					
						
							|  |  |  |         ("cifar10", "ori-test"), | 
					
						
							|  |  |  |         ("cifar100", "x-valid"), | 
					
						
							|  |  |  |         ("cifar100", "x-test"), | 
					
						
							|  |  |  |         ("ImageNet16-120", "x-valid"), | 
					
						
							|  |  |  |         ("ImageNet16-120", "x-test"), | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  |     for dataset, metric_on_set in pairs: | 
					
						
							|  |  |  |         arch_index, highest_acc = api.find_best(dataset, metric_on_set) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         print( | 
					
						
							|  |  |  |             "[{:10s}-{:10s} ::: index={:5d}, accuracy={:.2f}".format( | 
					
						
							|  |  |  |                 dataset, metric_on_set, arch_index, highest_acc | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2020-01-01 22:51:00 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  | def show_nas_sharing_w( | 
					
						
							|  |  |  |     api, dataset, subset, vis_save_dir, sufix, file_name, y_lims, x_maxs | 
					
						
							|  |  |  | ): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     color_set = ["r", "b", "g", "c", "m", "y", "k"] | 
					
						
							|  |  |  |     dpi, width, height = 300, 3400, 2600 | 
					
						
							|  |  |  |     LabelSize, LegendFontsize = 28, 28 | 
					
						
							|  |  |  |     figsize = width / float(dpi), height / float(dpi) | 
					
						
							|  |  |  |     fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |     # x_maxs = 250 | 
					
						
							|  |  |  |     plt.xlim(0, x_maxs + 1) | 
					
						
							|  |  |  |     plt.ylim(y_lims[0], y_lims[1]) | 
					
						
							|  |  |  |     interval_x, interval_y = x_maxs // 5, y_lims[2] | 
					
						
							|  |  |  |     plt.xticks(np.arange(0, x_maxs + 1, interval_x), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.yticks(np.arange(y_lims[0], y_lims[1], interval_y), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.grid() | 
					
						
							|  |  |  |     plt.xlabel("The searching epoch", fontsize=LabelSize) | 
					
						
							|  |  |  |     plt.ylabel("The accuracy (%)", fontsize=LabelSize) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     xpaths = { | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "RSPS": "output/search-cell-nas-bench-201/RANDOM-NAS-cifar10-{:}/checkpoint/".format( | 
					
						
							|  |  |  |             sufix | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         "DARTS-V1": "output/search-cell-nas-bench-201/DARTS-V1-cifar10-{:}/checkpoint/".format( | 
					
						
							|  |  |  |             sufix | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         "DARTS-V2": "output/search-cell-nas-bench-201/DARTS-V2-cifar10-{:}/checkpoint/".format( | 
					
						
							|  |  |  |             sufix | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         "GDAS": "output/search-cell-nas-bench-201/GDAS-cifar10-{:}/checkpoint/".format( | 
					
						
							|  |  |  |             sufix | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         "SETN": "output/search-cell-nas-bench-201/SETN-cifar10-{:}/checkpoint/".format( | 
					
						
							|  |  |  |             sufix | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         "ENAS": "output/search-cell-nas-bench-201/ENAS-cifar10-{:}/checkpoint/".format( | 
					
						
							|  |  |  |             sufix | 
					
						
							|  |  |  |         ), | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     } | 
					
						
							|  |  |  |     """
 | 
					
						
							| 
									
										
										
										
											2020-01-01 22:51:00 +11:00
										 |  |  |   xseeds = {'RSPS'    : [5349, 59613, 5983], | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  |             'DARTS-V1': [11416, 72873, 81184, 28640], | 
					
						
							| 
									
										
										
										
											2020-01-01 22:51:00 +11:00
										 |  |  |             'DARTS-V2': [43330, 79405, 79423], | 
					
						
							|  |  |  |             'GDAS'    : [19677, 884, 95950], | 
					
						
							|  |  |  |             'SETN'    : [20518, 61817, 89144], | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  |             'ENAS'    : [3231, 34238, 96929], | 
					
						
							| 
									
										
										
										
											2020-01-01 22:51:00 +11:00
										 |  |  |            } | 
					
						
							| 
									
										
										
										
											2020-01-16 01:43:07 +11:00
										 |  |  |   """
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     xseeds = { | 
					
						
							|  |  |  |         "RSPS": [23814, 28015, 95809], | 
					
						
							|  |  |  |         "DARTS-V1": [48349, 80877, 81920], | 
					
						
							|  |  |  |         "DARTS-V2": [61712, 7941, 87041], | 
					
						
							|  |  |  |         "GDAS": [72818, 72996, 78877], | 
					
						
							|  |  |  |         "SETN": [26985, 55206, 95404], | 
					
						
							|  |  |  |         "ENAS": [21792, 36605, 45029], | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def get_accs(xdata): | 
					
						
							|  |  |  |         epochs, xresults = xdata["epoch"], [] | 
					
						
							|  |  |  |         if -1 in xdata["genotypes"]: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             metrics = api.arch2infos_full[ | 
					
						
							|  |  |  |                 api.query_index_by_arch(xdata["genotypes"][-1]) | 
					
						
							|  |  |  |             ].get_metrics(dataset, subset, None, False) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             metrics = api.arch2infos_full[api.random()].get_metrics( | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 dataset, subset, None, False | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         xresults.append(metrics["accuracy"]) | 
					
						
							|  |  |  |         for iepoch in range(epochs): | 
					
						
							|  |  |  |             genotype = xdata["genotypes"][iepoch] | 
					
						
							|  |  |  |             index = api.query_index_by_arch(genotype) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             metrics = api.arch2infos_full[index].get_metrics( | 
					
						
							|  |  |  |                 dataset, subset, None, False | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             xresults.append(metrics["accuracy"]) | 
					
						
							|  |  |  |         return xresults | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if x_maxs == 50: | 
					
						
							|  |  |  |         xox, xxxstrs = "v2", ["DARTS-V1", "DARTS-V2"] | 
					
						
							|  |  |  |     elif x_maxs == 250: | 
					
						
							|  |  |  |         xox, xxxstrs = "v1", ["RSPS", "GDAS", "SETN", "ENAS"] | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  |     else: | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         raise ValueError("invalid x_maxs={:}".format(x_maxs)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for idx, method in enumerate(xxxstrs): | 
					
						
							|  |  |  |         xkey = method | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         all_paths = [ | 
					
						
							|  |  |  |             "{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey] | 
					
						
							|  |  |  |         ] | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         all_datas = [torch.load(xpath, map_location="cpu") for xpath in all_paths] | 
					
						
							|  |  |  |         accyss = [get_accs(xdatas) for xdatas in all_datas] | 
					
						
							|  |  |  |         accyss = np.array(accyss) | 
					
						
							|  |  |  |         epochs = list(range(accyss.shape[1])) | 
					
						
							|  |  |  |         plt.plot( | 
					
						
							|  |  |  |             epochs, | 
					
						
							|  |  |  |             [accyss[:, i].mean() for i in epochs], | 
					
						
							|  |  |  |             color=color_set[idx], | 
					
						
							|  |  |  |             linestyle="-", | 
					
						
							|  |  |  |             label="{:}".format(method), | 
					
						
							|  |  |  |             lw=2, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         plt.fill_between( | 
					
						
							|  |  |  |             epochs, | 
					
						
							|  |  |  |             [accyss[:, i].mean() - accyss[:, i].std() for i in epochs], | 
					
						
							|  |  |  |             [accyss[:, i].mean() + accyss[:, i].std() for i in epochs], | 
					
						
							|  |  |  |             alpha=0.2, | 
					
						
							|  |  |  |             color=color_set[idx], | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     # plt.legend(loc=4, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.legend(loc=0, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     save_path = vis_save_dir / "{:}.pdf".format(file_name) | 
					
						
							|  |  |  |     print("save figure into {:}\n".format(save_path)) | 
					
						
							|  |  |  |     fig.savefig(str(save_path), dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							| 
									
										
										
										
											2020-01-01 22:51:00 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-01-16 01:43:07 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  | def show_nas_sharing_w_v2( | 
					
						
							|  |  |  |     api, data_sub_a, data_sub_b, vis_save_dir, sufix, file_name, y_lims, x_maxs | 
					
						
							|  |  |  | ): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     color_set = ["r", "b", "g", "c", "m", "y", "k"] | 
					
						
							|  |  |  |     dpi, width, height = 300, 3400, 2600 | 
					
						
							|  |  |  |     LabelSize, LegendFontsize = 28, 28 | 
					
						
							|  |  |  |     figsize = width / float(dpi), height / float(dpi) | 
					
						
							|  |  |  |     fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |     # x_maxs = 250 | 
					
						
							|  |  |  |     plt.xlim(0, x_maxs + 1) | 
					
						
							|  |  |  |     plt.ylim(y_lims[0], y_lims[1]) | 
					
						
							|  |  |  |     interval_x, interval_y = x_maxs // 5, y_lims[2] | 
					
						
							|  |  |  |     plt.xticks(np.arange(0, x_maxs + 1, interval_x), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.yticks(np.arange(y_lims[0], y_lims[1], interval_y), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.grid() | 
					
						
							|  |  |  |     plt.xlabel("The searching epoch", fontsize=LabelSize) | 
					
						
							|  |  |  |     plt.ylabel("The accuracy (%)", fontsize=LabelSize) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     xpaths = { | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         "RSPS": "output/search-cell-nas-bench-201/RANDOM-NAS-cifar10-{:}/checkpoint/".format( | 
					
						
							|  |  |  |             sufix | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         "DARTS-V1": "output/search-cell-nas-bench-201/DARTS-V1-cifar10-{:}/checkpoint/".format( | 
					
						
							|  |  |  |             sufix | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         "DARTS-V2": "output/search-cell-nas-bench-201/DARTS-V2-cifar10-{:}/checkpoint/".format( | 
					
						
							|  |  |  |             sufix | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         "GDAS": "output/search-cell-nas-bench-201/GDAS-cifar10-{:}/checkpoint/".format( | 
					
						
							|  |  |  |             sufix | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         "SETN": "output/search-cell-nas-bench-201/SETN-cifar10-{:}/checkpoint/".format( | 
					
						
							|  |  |  |             sufix | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |         "ENAS": "output/search-cell-nas-bench-201/ENAS-cifar10-{:}/checkpoint/".format( | 
					
						
							|  |  |  |             sufix | 
					
						
							|  |  |  |         ), | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     } | 
					
						
							|  |  |  |     """
 | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  |   xseeds = {'RSPS'    : [5349, 59613, 5983], | 
					
						
							|  |  |  |             'DARTS-V1': [11416, 72873, 81184, 28640], | 
					
						
							|  |  |  |             'DARTS-V2': [43330, 79405, 79423], | 
					
						
							|  |  |  |             'GDAS'    : [19677, 884, 95950], | 
					
						
							|  |  |  |             'SETN'    : [20518, 61817, 89144], | 
					
						
							|  |  |  |             'ENAS'    : [3231, 34238, 96929], | 
					
						
							|  |  |  |            } | 
					
						
							| 
									
										
										
										
											2020-01-16 01:43:07 +11:00
										 |  |  |   """
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     xseeds = { | 
					
						
							|  |  |  |         "RSPS": [23814, 28015, 95809], | 
					
						
							|  |  |  |         "DARTS-V1": [48349, 80877, 81920], | 
					
						
							|  |  |  |         "DARTS-V2": [61712, 7941, 87041], | 
					
						
							|  |  |  |         "GDAS": [72818, 72996, 78877], | 
					
						
							|  |  |  |         "SETN": [26985, 55206, 95404], | 
					
						
							|  |  |  |         "ENAS": [21792, 36605, 45029], | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def get_accs(xdata, dataset, subset): | 
					
						
							|  |  |  |         epochs, xresults = xdata["epoch"], [] | 
					
						
							|  |  |  |         if -1 in xdata["genotypes"]: | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             metrics = api.arch2infos_full[ | 
					
						
							|  |  |  |                 api.query_index_by_arch(xdata["genotypes"][-1]) | 
					
						
							|  |  |  |             ].get_metrics(dataset, subset, None, False) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             metrics = api.arch2infos_full[api.random()].get_metrics( | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |                 dataset, subset, None, False | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         xresults.append(metrics["accuracy"]) | 
					
						
							|  |  |  |         for iepoch in range(epochs): | 
					
						
							|  |  |  |             genotype = xdata["genotypes"][iepoch] | 
					
						
							|  |  |  |             index = api.query_index_by_arch(genotype) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |             metrics = api.arch2infos_full[index].get_metrics( | 
					
						
							|  |  |  |                 dataset, subset, None, False | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             xresults.append(metrics["accuracy"]) | 
					
						
							|  |  |  |         return xresults | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if x_maxs == 50: | 
					
						
							|  |  |  |         xox, xxxstrs = "v2", ["DARTS-V1", "DARTS-V2"] | 
					
						
							|  |  |  |     elif x_maxs == 250: | 
					
						
							|  |  |  |         xox, xxxstrs = "v1", ["RSPS", "GDAS", "SETN", "ENAS"] | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  |     else: | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         raise ValueError("invalid x_maxs={:}".format(x_maxs)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for idx, method in enumerate(xxxstrs): | 
					
						
							|  |  |  |         xkey = method | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         all_paths = [ | 
					
						
							|  |  |  |             "{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey] | 
					
						
							|  |  |  |         ] | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         all_datas = [torch.load(xpath, map_location="cpu") for xpath in all_paths] | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         accyss_A = np.array( | 
					
						
							|  |  |  |             [get_accs(xdatas, data_sub_a[0], data_sub_a[1]) for xdatas in all_datas] | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         accyss_B = np.array( | 
					
						
							|  |  |  |             [get_accs(xdatas, data_sub_b[0], data_sub_b[1]) for xdatas in all_datas] | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         epochs = list(range(accyss_A.shape[1])) | 
					
						
							|  |  |  |         for j, accyss in enumerate([accyss_A, accyss_B]): | 
					
						
							|  |  |  |             if x_maxs == 50: | 
					
						
							|  |  |  |                 color, line = color_set[idx * 2 + j], "-" if j == 0 else "--" | 
					
						
							|  |  |  |             elif x_maxs == 250: | 
					
						
							|  |  |  |                 color, line = color_set[idx], "-" if j == 0 else "--" | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 raise ValueError("invalid x-maxs={:}".format(x_maxs)) | 
					
						
							|  |  |  |             plt.plot( | 
					
						
							|  |  |  |                 epochs, | 
					
						
							|  |  |  |                 [accyss[:, i].mean() for i in epochs], | 
					
						
							|  |  |  |                 color=color, | 
					
						
							|  |  |  |                 linestyle=line, | 
					
						
							|  |  |  |                 label="{:} ({:})".format(method, "VALID" if j == 0 else "TEST"), | 
					
						
							|  |  |  |                 lw=2, | 
					
						
							|  |  |  |                 alpha=0.9, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             plt.fill_between( | 
					
						
							|  |  |  |                 epochs, | 
					
						
							|  |  |  |                 [accyss[:, i].mean() - accyss[:, i].std() for i in epochs], | 
					
						
							|  |  |  |                 [accyss[:, i].mean() + accyss[:, i].std() for i in epochs], | 
					
						
							|  |  |  |                 alpha=0.2, | 
					
						
							|  |  |  |                 color=color, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             setname = data_sub_a if j == 0 else data_sub_b | 
					
						
							|  |  |  |             print( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |                 "{:} -- {:} ---- {:.2f}$\\pm${:.2f}".format( | 
					
						
							|  |  |  |                     method, setname, accyss[:, -1].mean(), accyss[:, -1].std() | 
					
						
							|  |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |             ) | 
					
						
							|  |  |  |     # plt.legend(loc=4, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.legend(loc=0, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     save_path = vis_save_dir / "{:}-{:}".format(xox, file_name) | 
					
						
							|  |  |  |     print("save figure into {:}\n".format(save_path)) | 
					
						
							|  |  |  |     fig.savefig(str(save_path), dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def show_reinforce(api, root, dataset, xset, file_name, y_lims): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     print("root-path={:}, dataset={:}, xset={:}".format(root, dataset, xset)) | 
					
						
							|  |  |  |     LRs = ["0.01", "0.02", "0.1", "0.2", "0.5"] | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     checkpoints = [ | 
					
						
							|  |  |  |         "./output/search-cell-nas-bench-201/REINFORCE-cifar10-{:}/results.pth".format(x) | 
					
						
							|  |  |  |         for x in LRs | 
					
						
							|  |  |  |     ] | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     acc_lr_dict, indexes = {}, None | 
					
						
							|  |  |  |     for lr, checkpoint in zip(LRs, checkpoints): | 
					
						
							|  |  |  |         all_indexes, accuracies = torch.load(checkpoint, map_location="cpu"), [] | 
					
						
							|  |  |  |         for x in all_indexes: | 
					
						
							|  |  |  |             info = api.arch2infos_full[x] | 
					
						
							|  |  |  |             metrics = info.get_metrics(dataset, xset, None, False) | 
					
						
							|  |  |  |             accuracies.append(metrics["accuracy"]) | 
					
						
							|  |  |  |         if indexes is None: | 
					
						
							|  |  |  |             indexes = list(range(len(accuracies))) | 
					
						
							|  |  |  |         acc_lr_dict[lr] = np.array(sorted(accuracies)) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         print( | 
					
						
							|  |  |  |             "LR={:.3f}, mean={:}, std={:}".format( | 
					
						
							|  |  |  |                 float(lr), acc_lr_dict[lr].mean(), acc_lr_dict[lr].std() | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     color_set = ["r", "b", "g", "c", "m", "y", "k"] | 
					
						
							|  |  |  |     dpi, width, height = 300, 3400, 2600 | 
					
						
							|  |  |  |     LabelSize, LegendFontsize = 28, 22 | 
					
						
							|  |  |  |     figsize = width / float(dpi), height / float(dpi) | 
					
						
							|  |  |  |     fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |     x_axis = np.arange(0, 600) | 
					
						
							|  |  |  |     plt.xlim(0, max(indexes)) | 
					
						
							|  |  |  |     plt.ylim(y_lims[0], y_lims[1]) | 
					
						
							|  |  |  |     interval_x, interval_y = 100, y_lims[2] | 
					
						
							|  |  |  |     plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.yticks(np.arange(y_lims[0], y_lims[1], interval_y), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.grid() | 
					
						
							|  |  |  |     plt.xlabel("The index of runs", fontsize=LabelSize) | 
					
						
							|  |  |  |     plt.ylabel("The accuracy (%)", fontsize=LabelSize) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for idx, LR in enumerate(LRs): | 
					
						
							|  |  |  |         legend = "LR={:.2f}".format(float(LR)) | 
					
						
							|  |  |  |         # color, linestyle = color_set[idx // 2], '-' if idx % 2 == 0 else '-.' | 
					
						
							|  |  |  |         color, linestyle = color_set[idx], "-" | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         plt.plot( | 
					
						
							|  |  |  |             indexes, | 
					
						
							|  |  |  |             acc_lr_dict[LR], | 
					
						
							|  |  |  |             color=color, | 
					
						
							|  |  |  |             linestyle=linestyle, | 
					
						
							|  |  |  |             label=legend, | 
					
						
							|  |  |  |             lw=2, | 
					
						
							|  |  |  |             alpha=0.8, | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         print( | 
					
						
							|  |  |  |             "{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}".format( | 
					
						
							|  |  |  |                 legend, | 
					
						
							|  |  |  |                 np.mean(acc_lr_dict[LR]), | 
					
						
							|  |  |  |                 np.std(acc_lr_dict[LR]), | 
					
						
							|  |  |  |                 np.mean(acc_lr_dict[LR]), | 
					
						
							|  |  |  |                 np.std(acc_lr_dict[LR]), | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     plt.legend(loc=4, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     save_path = root / "{:}-{:}-{:}.pdf".format(dataset, xset, file_name) | 
					
						
							|  |  |  |     print("save figure into {:}\n".format(save_path)) | 
					
						
							|  |  |  |     fig.savefig(str(save_path), dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							| 
									
										
										
										
											2020-01-01 22:51:00 +11:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-01-16 01:43:07 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  | def show_rea(api, root, dataset, xset, file_name, y_lims): | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     print("root-path={:}, dataset={:}, xset={:}".format(root, dataset, xset)) | 
					
						
							|  |  |  |     SSs = [3, 5, 10] | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     checkpoints = [ | 
					
						
							|  |  |  |         "./output/search-cell-nas-bench-201/R-EA-cifar10-SS{:}/results.pth".format(x) | 
					
						
							|  |  |  |         for x in SSs | 
					
						
							|  |  |  |     ] | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     acc_ss_dict, indexes = {}, None | 
					
						
							|  |  |  |     for ss, checkpoint in zip(SSs, checkpoints): | 
					
						
							|  |  |  |         all_indexes, accuracies = torch.load(checkpoint, map_location="cpu"), [] | 
					
						
							|  |  |  |         for x in all_indexes: | 
					
						
							|  |  |  |             info = api.arch2infos_full[x] | 
					
						
							|  |  |  |             metrics = info.get_metrics(dataset, xset, None, False) | 
					
						
							|  |  |  |             accuracies.append(metrics["accuracy"]) | 
					
						
							|  |  |  |         if indexes is None: | 
					
						
							|  |  |  |             indexes = list(range(len(accuracies))) | 
					
						
							|  |  |  |         acc_ss_dict[ss] = np.array(sorted(accuracies)) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         print( | 
					
						
							|  |  |  |             "Sample-Size={:2d}, mean={:}, std={:}".format( | 
					
						
							|  |  |  |                 ss, acc_ss_dict[ss].mean(), acc_ss_dict[ss].std() | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     color_set = ["r", "b", "g", "c", "m", "y", "k"] | 
					
						
							|  |  |  |     dpi, width, height = 300, 3400, 2600 | 
					
						
							|  |  |  |     LabelSize, LegendFontsize = 28, 22 | 
					
						
							|  |  |  |     figsize = width / float(dpi), height / float(dpi) | 
					
						
							|  |  |  |     fig = plt.figure(figsize=figsize) | 
					
						
							|  |  |  |     x_axis = np.arange(0, 600) | 
					
						
							|  |  |  |     plt.xlim(0, max(indexes)) | 
					
						
							|  |  |  |     plt.ylim(y_lims[0], y_lims[1]) | 
					
						
							|  |  |  |     interval_x, interval_y = 100, y_lims[2] | 
					
						
							|  |  |  |     plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.yticks(np.arange(y_lims[0], y_lims[1], interval_y), fontsize=LegendFontsize) | 
					
						
							|  |  |  |     plt.grid() | 
					
						
							|  |  |  |     plt.xlabel("The index of runs", fontsize=LabelSize) | 
					
						
							|  |  |  |     plt.ylabel("The accuracy (%)", fontsize=LabelSize) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for idx, ss in enumerate(SSs): | 
					
						
							|  |  |  |         legend = "sample-size={:2d}".format(ss) | 
					
						
							|  |  |  |         # color, linestyle = color_set[idx // 2], '-' if idx % 2 == 0 else '-.' | 
					
						
							|  |  |  |         color, linestyle = color_set[idx], "-" | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         plt.plot( | 
					
						
							|  |  |  |             indexes, | 
					
						
							|  |  |  |             acc_ss_dict[ss], | 
					
						
							|  |  |  |             color=color, | 
					
						
							|  |  |  |             linestyle=linestyle, | 
					
						
							|  |  |  |             label=legend, | 
					
						
							|  |  |  |             lw=2, | 
					
						
							|  |  |  |             alpha=0.8, | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |         print( | 
					
						
							|  |  |  |             "{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}".format( | 
					
						
							|  |  |  |                 legend, | 
					
						
							|  |  |  |                 np.mean(acc_ss_dict[ss]), | 
					
						
							|  |  |  |                 np.std(acc_ss_dict[ss]), | 
					
						
							|  |  |  |                 np.mean(acc_ss_dict[ss]), | 
					
						
							|  |  |  |                 np.std(acc_ss_dict[ss]), | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |     plt.legend(loc=4, fontsize=LegendFontsize) | 
					
						
							|  |  |  |     save_path = root / "{:}-{:}-{:}.pdf".format(dataset, xset, file_name) | 
					
						
							|  |  |  |     print("save figure into {:}\n".format(save_path)) | 
					
						
							|  |  |  |     fig.savefig(str(save_path), dpi=dpi, bbox_inches="tight", format="pdf") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         description="NAS-Bench-201", | 
					
						
							|  |  |  |         formatter_class=argparse.ArgumentDefaultsHelpFormatter, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--save_dir", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default="./output/search-cell-nas-bench-201/visuals", | 
					
						
							|  |  |  |         help="The base-name of folder to save checkpoints and log.", | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--api_path", | 
					
						
							|  |  |  |         type=str, | 
					
						
							|  |  |  |         default=None, | 
					
						
							|  |  |  |         help="The path to the NAS-Bench-201 benchmark file.", | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     args = parser.parse_args() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     vis_save_dir = Path(args.save_dir) | 
					
						
							|  |  |  |     vis_save_dir.mkdir(parents=True, exist_ok=True) | 
					
						
							|  |  |  |     meta_file = Path(args.api_path) | 
					
						
							|  |  |  |     assert meta_file.exists(), "invalid path for api : {:}".format(meta_file) | 
					
						
							|  |  |  |     # visualize_rank_over_time(str(meta_file), vis_save_dir / 'over-time') | 
					
						
							|  |  |  |     # write_video(vis_save_dir / 'over-time') | 
					
						
							|  |  |  |     # visualize_info(str(meta_file), 'cifar10' , vis_save_dir) | 
					
						
							|  |  |  |     # visualize_info(str(meta_file), 'cifar100', vis_save_dir) | 
					
						
							|  |  |  |     # visualize_info(str(meta_file), 'ImageNet16-120', vis_save_dir) | 
					
						
							|  |  |  |     # visualize_relative_ranking(vis_save_dir) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     api = API(args.api_path) | 
					
						
							|  |  |  |     # show_reinforce(api, vis_save_dir, 'cifar10-valid' , 'x-valid', 'REINFORCE-CIFAR-10', (85, 92, 2)) | 
					
						
							|  |  |  |     # show_rea      (api, vis_save_dir, 'cifar10-valid' , 'x-valid', 'REA-CIFAR-10', (88, 92, 1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # plot_results_nas_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10'       , 'ori-test'), vis_save_dir, 'nas-com-v2-cifar010.pdf', (85,95, 1)) | 
					
						
							|  |  |  |     # plot_results_nas_v2(api, ('cifar100'      , 'x-valid'), ('cifar100'      , 'x-test'  ), vis_save_dir, 'nas-com-v2-cifar100.pdf', (60,75, 3)) | 
					
						
							|  |  |  |     # plot_results_nas_v2(api, ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test'  ), vis_save_dir, 'nas-com-v2-imagenet.pdf', (35,48, 2)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     show_nas_sharing_w_v2( | 
					
						
							|  |  |  |         api, | 
					
						
							|  |  |  |         ("cifar10-valid", "x-valid"), | 
					
						
							|  |  |  |         ("cifar10", "ori-test"), | 
					
						
							|  |  |  |         vis_save_dir, | 
					
						
							|  |  |  |         "BN0", | 
					
						
							|  |  |  |         "BN0-DARTS-CIFAR010.pdf", | 
					
						
							|  |  |  |         (0, 100, 10), | 
					
						
							|  |  |  |         50, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     show_nas_sharing_w_v2( | 
					
						
							|  |  |  |         api, | 
					
						
							|  |  |  |         ("cifar100", "x-valid"), | 
					
						
							|  |  |  |         ("cifar100", "x-test"), | 
					
						
							|  |  |  |         vis_save_dir, | 
					
						
							|  |  |  |         "BN0", | 
					
						
							|  |  |  |         "BN0-DARTS-CIFAR100.pdf", | 
					
						
							|  |  |  |         (0, 100, 10), | 
					
						
							|  |  |  |         50, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     show_nas_sharing_w_v2( | 
					
						
							|  |  |  |         api, | 
					
						
							|  |  |  |         ("ImageNet16-120", "x-valid"), | 
					
						
							|  |  |  |         ("ImageNet16-120", "x-test"), | 
					
						
							|  |  |  |         vis_save_dir, | 
					
						
							|  |  |  |         "BN0", | 
					
						
							|  |  |  |         "BN0-DARTS-ImageNet.pdf", | 
					
						
							|  |  |  |         (0, 100, 10), | 
					
						
							|  |  |  |         50, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     show_nas_sharing_w_v2( | 
					
						
							|  |  |  |         api, | 
					
						
							|  |  |  |         ("cifar10-valid", "x-valid"), | 
					
						
							|  |  |  |         ("cifar10", "ori-test"), | 
					
						
							|  |  |  |         vis_save_dir, | 
					
						
							|  |  |  |         "BN0", | 
					
						
							|  |  |  |         "BN0-OTHER-CIFAR010.pdf", | 
					
						
							|  |  |  |         (0, 100, 10), | 
					
						
							|  |  |  |         250, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     show_nas_sharing_w_v2( | 
					
						
							|  |  |  |         api, | 
					
						
							|  |  |  |         ("cifar100", "x-valid"), | 
					
						
							|  |  |  |         ("cifar100", "x-test"), | 
					
						
							|  |  |  |         vis_save_dir, | 
					
						
							|  |  |  |         "BN0", | 
					
						
							|  |  |  |         "BN0-OTHER-CIFAR100.pdf", | 
					
						
							|  |  |  |         (0, 100, 10), | 
					
						
							|  |  |  |         250, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     show_nas_sharing_w_v2( | 
					
						
							|  |  |  |         api, | 
					
						
							|  |  |  |         ("ImageNet16-120", "x-valid"), | 
					
						
							|  |  |  |         ("ImageNet16-120", "x-test"), | 
					
						
							|  |  |  |         vis_save_dir, | 
					
						
							|  |  |  |         "BN0", | 
					
						
							|  |  |  |         "BN0-OTHER-ImageNet.pdf", | 
					
						
							|  |  |  |         (0, 100, 10), | 
					
						
							|  |  |  |         250, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     show_nas_sharing_w( | 
					
						
							| 
									
										
										
										
											2021-03-18 16:02:55 +08:00
										 |  |  |         api, | 
					
						
							|  |  |  |         "cifar10-valid", | 
					
						
							|  |  |  |         "x-valid", | 
					
						
							|  |  |  |         vis_save_dir, | 
					
						
							|  |  |  |         "BN0", | 
					
						
							|  |  |  |         "BN0-XX-CIFAR010-VALID.pdf", | 
					
						
							|  |  |  |         (0, 100, 10), | 
					
						
							|  |  |  |         250, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     show_nas_sharing_w( | 
					
						
							|  |  |  |         api, | 
					
						
							|  |  |  |         "cifar10", | 
					
						
							|  |  |  |         "ori-test", | 
					
						
							|  |  |  |         vis_save_dir, | 
					
						
							|  |  |  |         "BN0", | 
					
						
							|  |  |  |         "BN0-XX-CIFAR010-TEST.pdf", | 
					
						
							|  |  |  |         (0, 100, 10), | 
					
						
							|  |  |  |         250, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:25:58 +00:00
										 |  |  |     ) | 
					
						
							|  |  |  |     """
 | 
					
						
							| 
									
										
										
										
											2020-01-02 14:35:58 +11:00
										 |  |  |   for x_maxs in [50, 250]: | 
					
						
							|  |  |  |     show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | 
					
						
							|  |  |  |     show_nas_sharing_w(api, 'cifar10'       , 'ori-test', vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | 
					
						
							|  |  |  |     show_nas_sharing_w(api, 'cifar100'      , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | 
					
						
							|  |  |  |     show_nas_sharing_w(api, 'cifar100'      , 'x-test'  , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | 
					
						
							|  |  |  |     show_nas_sharing_w(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | 
					
						
							|  |  |  |     show_nas_sharing_w(api, 'ImageNet16-120', 'x-test'  , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | 
					
						
							| 
									
										
										
										
											2020-01-15 00:52:06 +11:00
										 |  |  |    | 
					
						
							|  |  |  |   show_nas_sharing_w_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10'       , 'ori-test') , vis_save_dir, 'DARTS-CIFAR010.pdf', (0, 100,10), 50) | 
					
						
							| 
									
										
										
										
											2020-01-16 01:43:07 +11:00
										 |  |  |   just_show(api) | 
					
						
							| 
									
										
										
										
											2020-01-01 22:51:00 +11:00
										 |  |  |   plot_results_nas(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-com.pdf', (85,95, 1)) | 
					
						
							|  |  |  |   plot_results_nas(api, 'cifar10'       , 'ori-test', vis_save_dir, 'nas-com.pdf', (85,95, 1)) | 
					
						
							|  |  |  |   plot_results_nas(api, 'cifar100'      , 'x-valid' , vis_save_dir, 'nas-com.pdf', (55,75, 3)) | 
					
						
							|  |  |  |   plot_results_nas(api, 'cifar100'      , 'x-test'  , vis_save_dir, 'nas-com.pdf', (55,75, 3)) | 
					
						
							|  |  |  |   plot_results_nas(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-com.pdf', (35,50, 3)) | 
					
						
							|  |  |  |   plot_results_nas(api, 'ImageNet16-120', 'x-test'  , vis_save_dir, 'nas-com.pdf', (35,50, 3)) | 
					
						
							| 
									
										
										
										
											2020-01-09 22:26:23 +11:00
										 |  |  |   """
 |