67 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			67 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | ##################################################### | ||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||
|  | ##################################################### | ||
|  | import math | ||
|  | import abc | ||
|  | import copy | ||
|  | import numpy as np | ||
|  | from typing import Optional | ||
|  | import torch | ||
|  | import torch.utils.data as data | ||
|  | 
 | ||
|  | from .math_base_funcs import FitFunc | ||
|  | 
 | ||
|  | 
 | ||
|  | class DynamicFunc(FitFunc): | ||
|  |     """The dynamic quadratic function, where each param is a function.""" | ||
|  | 
 | ||
|  |     def __init__(self, freedom: int, params=None): | ||
|  |         super(DynamicFunc, self).__init__(freedom, None, params) | ||
|  |         self._timestamp = None | ||
|  | 
 | ||
|  |     def __call__(self, x, timestamp=None): | ||
|  |         raise NotImplementedError | ||
|  | 
 | ||
|  |     def _getitem(self, x, weights): | ||
|  |         raise NotImplementedError | ||
|  | 
 | ||
|  |     def set_timestamp(self, timestamp): | ||
|  |         self._timestamp = timestamp | ||
|  | 
 | ||
|  |     def noise_call(self, x, timestamp=None, std=0.1): | ||
|  |         clean_y = self.__call__(x, timestamp) | ||
|  |         if isinstance(clean_y, np.ndarray): | ||
|  |             noise_y = clean_y + np.random.normal(scale=std, size=clean_y.shape) | ||
|  |         else: | ||
|  |             raise ValueError("Unkonwn type: {:}".format(type(clean_y))) | ||
|  |         return noise_y | ||
|  | 
 | ||
|  | 
 | ||
|  | class DynamicQuadraticFunc(DynamicFunc): | ||
|  |     """The dynamic quadratic function that outputs f(x) = a * x^2 + b * x + c.
 | ||
|  |     The a, b, and c is a function of timestamp. | ||
|  |     """
 | ||
|  | 
 | ||
|  |     def __init__(self, params=None): | ||
|  |         super(DynamicQuadraticFunc, self).__init__(3, params) | ||
|  | 
 | ||
|  |     def __call__(self, x, timestamp=None): | ||
|  |         self.check_valid() | ||
|  |         if timestamp is None: | ||
|  |             timestamp = self._timestamp | ||
|  |         a = self._params[0](timestamp) | ||
|  |         b = self._params[1](timestamp) | ||
|  |         c = self._params[2](timestamp) | ||
|  |         convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x | ||
|  |         a, b, c = convert_fn(a), convert_fn(b), convert_fn(c) | ||
|  |         return a * x * x + b * x + c | ||
|  | 
 | ||
|  |     def __repr__(self): | ||
|  |         return "{name}({a} * x^2 + {b} * x + {c}, timestamp={timestamp})".format( | ||
|  |             name=self.__class__.__name__, | ||
|  |             a=self._params[0], | ||
|  |             b=self._params[1], | ||
|  |             c=self._params[2], | ||
|  |             timestamp=self._timestamp, | ||
|  |         ) |