| 
									
										
										
										
											2019-11-15 17:15:07 +11:00
										 |  |  | ################################################## | 
					
						
							|  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | 
					
						
							|  |  |  | ################################################## | 
					
						
							| 
									
										
										
										
											2019-09-28 18:24:47 +10:00
										 |  |  | import math, torch | 
					
						
							|  |  |  | from collections import OrderedDict | 
					
						
							|  |  |  | from bisect import bisect_right | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from ..initialization import initialize_resnet | 
					
						
							|  |  |  | from ..SharedUtils    import additive_func | 
					
						
							|  |  |  | from .SoftSelect      import select2withP, ChannelWiseInter | 
					
						
							|  |  |  | from .SoftSelect      import linear_forward | 
					
						
							|  |  |  | from .SoftSelect      import get_width_choices | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_depth_choices(nDepth, return_num): | 
					
						
							|  |  |  |   if nDepth == 2: | 
					
						
							|  |  |  |     choices = (1, 2) | 
					
						
							|  |  |  |   elif nDepth == 3: | 
					
						
							|  |  |  |     choices = (1, 2, 3) | 
					
						
							|  |  |  |   elif nDepth > 3: | 
					
						
							|  |  |  |     choices = list(range(1, nDepth+1, 2)) | 
					
						
							|  |  |  |     if choices[-1] < nDepth: choices.append(nDepth) | 
					
						
							|  |  |  |   else: | 
					
						
							|  |  |  |     raise ValueError('invalid nDepth : {:}'.format(nDepth)) | 
					
						
							|  |  |  |   if return_num: return len(choices) | 
					
						
							|  |  |  |   else         : return choices | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ConvBNReLU(nn.Module): | 
					
						
							|  |  |  |   num_conv  = 1 | 
					
						
							|  |  |  |   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | 
					
						
							|  |  |  |     super(ConvBNReLU, self).__init__() | 
					
						
							|  |  |  |     self.InShape  = None | 
					
						
							|  |  |  |     self.OutShape = None | 
					
						
							|  |  |  |     self.choices  = get_width_choices(nOut) | 
					
						
							|  |  |  |     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | 
					
						
							|  |  |  |     else       : self.avg = None | 
					
						
							|  |  |  |     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | 
					
						
							|  |  |  |     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | 
					
						
							|  |  |  |     else       : self.bn  = None | 
					
						
							|  |  |  |     if has_relu: self.relu = nn.ReLU(inplace=False) | 
					
						
							|  |  |  |     else       : self.relu = None | 
					
						
							|  |  |  |     self.in_dim   = nIn | 
					
						
							|  |  |  |     self.out_dim  = nOut | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_flops(self, divide=1): | 
					
						
							|  |  |  |     iC, oC = self.in_dim, self.out_dim | 
					
						
							|  |  |  |     assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | 
					
						
							|  |  |  |     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | 
					
						
							|  |  |  |     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | 
					
						
							|  |  |  |     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | 
					
						
							|  |  |  |     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | 
					
						
							|  |  |  |     all_positions = self.OutShape[0] * self.OutShape[1] | 
					
						
							|  |  |  |     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | 
					
						
							|  |  |  |     if self.conv.bias is not None: flops += all_positions / divide | 
					
						
							|  |  |  |     return flops | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, inputs): | 
					
						
							|  |  |  |     if self.avg : out = self.avg( inputs ) | 
					
						
							|  |  |  |     else        : out = inputs | 
					
						
							|  |  |  |     conv = self.conv( out ) | 
					
						
							|  |  |  |     if self.bn  : out = self.bn( conv ) | 
					
						
							|  |  |  |     else        : out = conv | 
					
						
							|  |  |  |     if self.relu: out = self.relu( out ) | 
					
						
							|  |  |  |     else        : out = out | 
					
						
							|  |  |  |     if self.InShape is None: | 
					
						
							|  |  |  |       self.InShape  = (inputs.size(-2), inputs.size(-1)) | 
					
						
							|  |  |  |       self.OutShape = (out.size(-2)   , out.size(-1)) | 
					
						
							|  |  |  |     return out | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ResNetBasicblock(nn.Module): | 
					
						
							|  |  |  |   expansion = 1 | 
					
						
							|  |  |  |   num_conv  = 2 | 
					
						
							|  |  |  |   def __init__(self, inplanes, planes, stride): | 
					
						
							|  |  |  |     super(ResNetBasicblock, self).__init__() | 
					
						
							|  |  |  |     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | 
					
						
							|  |  |  |     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | 
					
						
							|  |  |  |     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | 
					
						
							|  |  |  |     if stride == 2: | 
					
						
							|  |  |  |       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | 
					
						
							|  |  |  |     elif inplanes != planes: | 
					
						
							|  |  |  |       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       self.downsample = None | 
					
						
							|  |  |  |     self.out_dim     = planes | 
					
						
							|  |  |  |     self.search_mode = 'basic' | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_flops(self, divide=1): | 
					
						
							|  |  |  |     flop_A = self.conv_a.get_flops(divide) | 
					
						
							|  |  |  |     flop_B = self.conv_b.get_flops(divide) | 
					
						
							|  |  |  |     if hasattr(self.downsample, 'get_flops'): | 
					
						
							|  |  |  |       flop_C = self.downsample.get_flops(divide) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       flop_C = 0 | 
					
						
							|  |  |  |     return flop_A + flop_B + flop_C | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, inputs): | 
					
						
							|  |  |  |     basicblock = self.conv_a(inputs) | 
					
						
							|  |  |  |     basicblock = self.conv_b(basicblock) | 
					
						
							|  |  |  |     if self.downsample is not None: residual = self.downsample(inputs) | 
					
						
							|  |  |  |     else                          : residual = inputs | 
					
						
							|  |  |  |     out = additive_func(residual, basicblock) | 
					
						
							|  |  |  |     return nn.functional.relu(out, inplace=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ResNetBottleneck(nn.Module): | 
					
						
							|  |  |  |   expansion = 4 | 
					
						
							|  |  |  |   num_conv  = 3 | 
					
						
							|  |  |  |   def __init__(self, inplanes, planes, stride): | 
					
						
							|  |  |  |     super(ResNetBottleneck, self).__init__() | 
					
						
							|  |  |  |     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | 
					
						
							|  |  |  |     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | 
					
						
							|  |  |  |     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | 
					
						
							|  |  |  |     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | 
					
						
							|  |  |  |     if stride == 2: | 
					
						
							|  |  |  |       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | 
					
						
							|  |  |  |     elif inplanes != planes*self.expansion: | 
					
						
							|  |  |  |       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       self.downsample = None | 
					
						
							|  |  |  |     self.out_dim     = planes * self.expansion | 
					
						
							|  |  |  |     self.search_mode = 'basic' | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_range(self): | 
					
						
							|  |  |  |     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_flops(self, divide): | 
					
						
							|  |  |  |     flop_A = self.conv_1x1.get_flops(divide) | 
					
						
							|  |  |  |     flop_B = self.conv_3x3.get_flops(divide) | 
					
						
							|  |  |  |     flop_C = self.conv_1x4.get_flops(divide) | 
					
						
							|  |  |  |     if hasattr(self.downsample, 'get_flops'): | 
					
						
							|  |  |  |       flop_D = self.downsample.get_flops(divide) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       flop_D = 0 | 
					
						
							|  |  |  |     return flop_A + flop_B + flop_C + flop_D | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, inputs): | 
					
						
							|  |  |  |     bottleneck = self.conv_1x1(inputs) | 
					
						
							|  |  |  |     bottleneck = self.conv_3x3(bottleneck) | 
					
						
							|  |  |  |     bottleneck = self.conv_1x4(bottleneck) | 
					
						
							|  |  |  |     if self.downsample is not None: residual = self.downsample(inputs) | 
					
						
							|  |  |  |     else                          : residual = inputs | 
					
						
							|  |  |  |     out = additive_func(residual, bottleneck) | 
					
						
							|  |  |  |     return nn.functional.relu(out, inplace=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class SearchDepthCifarResNet(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self, block_name, depth, num_classes): | 
					
						
							|  |  |  |     super(SearchDepthCifarResNet, self).__init__() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | 
					
						
							|  |  |  |     if block_name == 'ResNetBasicblock': | 
					
						
							|  |  |  |       block = ResNetBasicblock | 
					
						
							|  |  |  |       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | 
					
						
							|  |  |  |       layer_blocks = (depth - 2) // 6 | 
					
						
							|  |  |  |     elif block_name == 'ResNetBottleneck': | 
					
						
							|  |  |  |       block = ResNetBottleneck | 
					
						
							|  |  |  |       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | 
					
						
							|  |  |  |       layer_blocks = (depth - 2) // 9 | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       raise ValueError('invalid block : {:}'.format(block_name)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.message      = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | 
					
						
							|  |  |  |     self.num_classes  = num_classes | 
					
						
							|  |  |  |     self.channels     = [16] | 
					
						
							|  |  |  |     self.layers       = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | 
					
						
							|  |  |  |     self.InShape      = None | 
					
						
							|  |  |  |     self.depth_info   = OrderedDict() | 
					
						
							|  |  |  |     self.depth_at_i   = OrderedDict() | 
					
						
							|  |  |  |     for stage in range(3): | 
					
						
							|  |  |  |       cur_block_choices = get_depth_choices(layer_blocks, False) | 
					
						
							|  |  |  |       assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks) | 
					
						
							|  |  |  |       self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks) | 
					
						
							|  |  |  |       block_choices, xstart = [], len(self.layers) | 
					
						
							|  |  |  |       for iL in range(layer_blocks): | 
					
						
							|  |  |  |         iC     = self.channels[-1] | 
					
						
							|  |  |  |         planes = 16 * (2**stage) | 
					
						
							|  |  |  |         stride = 2 if stage > 0 and iL == 0 else 1 | 
					
						
							|  |  |  |         module = block(iC, planes, stride) | 
					
						
							|  |  |  |         self.channels.append( module.out_dim ) | 
					
						
							|  |  |  |         self.layers.append  ( module ) | 
					
						
							|  |  |  |         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | 
					
						
							|  |  |  |         # added for depth | 
					
						
							|  |  |  |         layer_index = len(self.layers) - 1 | 
					
						
							|  |  |  |         if iL + 1 in cur_block_choices: block_choices.append( layer_index ) | 
					
						
							|  |  |  |         if iL + 1 == layer_blocks: | 
					
						
							|  |  |  |           self.depth_info[layer_index] = {'choices': block_choices, | 
					
						
							|  |  |  |                                           'stage'  : stage, | 
					
						
							|  |  |  |                                           'xstart' : xstart} | 
					
						
							|  |  |  |     self.depth_info_list = [] | 
					
						
							|  |  |  |     for xend, info in self.depth_info.items(): | 
					
						
							|  |  |  |       self.depth_info_list.append( (xend, info) ) | 
					
						
							|  |  |  |       xstart, xstage = info['xstart'], info['stage'] | 
					
						
							|  |  |  |       for ilayer in range(xstart, xend+1): | 
					
						
							|  |  |  |         idx = bisect_right(info['choices'], ilayer-1) | 
					
						
							|  |  |  |         self.depth_at_i[ilayer] = (xstage, idx) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.avgpool     = nn.AvgPool2d(8) | 
					
						
							|  |  |  |     self.classifier  = nn.Linear(module.out_dim, num_classes) | 
					
						
							|  |  |  |     self.InShape     = None | 
					
						
							|  |  |  |     self.tau         = -1 | 
					
						
							|  |  |  |     self.search_mode = 'basic' | 
					
						
							|  |  |  |     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True)))) | 
					
						
							|  |  |  |     nn.init.normal_(self.depth_attentions, 0, 0.01) | 
					
						
							|  |  |  |     self.apply(initialize_resnet) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def arch_parameters(self): | 
					
						
							|  |  |  |     return [self.depth_attentions] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def base_parameters(self): | 
					
						
							|  |  |  |     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_flop(self, mode, config_dict, extra_info): | 
					
						
							|  |  |  |     if config_dict is not None: config_dict = config_dict.copy() | 
					
						
							|  |  |  |     # select depth | 
					
						
							|  |  |  |     if mode == 'genotype': | 
					
						
							|  |  |  |       with torch.no_grad(): | 
					
						
							|  |  |  |         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | 
					
						
							|  |  |  |         choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | 
					
						
							|  |  |  |     elif mode == 'max': | 
					
						
							|  |  |  |       choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))] | 
					
						
							|  |  |  |     elif mode == 'random': | 
					
						
							|  |  |  |       with torch.no_grad(): | 
					
						
							|  |  |  |         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | 
					
						
							|  |  |  |         choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       raise ValueError('invalid mode : {:}'.format(mode)) | 
					
						
							|  |  |  |     selected_layers = [] | 
					
						
							|  |  |  |     for choice, xvalue in zip(choices, self.depth_info_list): | 
					
						
							|  |  |  |       xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1 | 
					
						
							|  |  |  |       selected_layers.append(xtemp) | 
					
						
							|  |  |  |     flop = 0 | 
					
						
							|  |  |  |     for i, layer in enumerate(self.layers): | 
					
						
							|  |  |  |       if i in self.depth_at_i: | 
					
						
							|  |  |  |         xstagei, xatti = self.depth_at_i[i] | 
					
						
							|  |  |  |         if xatti <= choices[xstagei]: # leave this depth | 
					
						
							|  |  |  |           flop+= layer.get_flops() | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |           flop+= 0 # do not use this layer | 
					
						
							|  |  |  |       else: | 
					
						
							|  |  |  |         flop+= layer.get_flops() | 
					
						
							|  |  |  |     # the last fc layer | 
					
						
							|  |  |  |     flop += self.classifier.in_features * self.classifier.out_features | 
					
						
							|  |  |  |     if config_dict is None: | 
					
						
							|  |  |  |       return flop / 1e6 | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       config_dict['xblocks']    = selected_layers | 
					
						
							|  |  |  |       config_dict['super_type'] = 'infer-depth' | 
					
						
							|  |  |  |       config_dict['estimated_FLOP'] = flop / 1e6 | 
					
						
							|  |  |  |       return flop / 1e6, config_dict | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_arch_info(self): | 
					
						
							|  |  |  |     string = "for depth, there are {:} attention probabilities.".format(len(self.depth_attentions)) | 
					
						
							|  |  |  |     string+= '\n{:}'.format(self.depth_info) | 
					
						
							|  |  |  |     discrepancy = [] | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |       for i, att in enumerate(self.depth_attentions): | 
					
						
							|  |  |  |         prob = nn.functional.softmax(att, dim=0) | 
					
						
							|  |  |  |         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | 
					
						
							|  |  |  |         prob = ['{:.3f}'.format(x) for x in prob] | 
					
						
							|  |  |  |         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob)) | 
					
						
							|  |  |  |         logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()] | 
					
						
							|  |  |  |         xstring += '  ||  {:17s}'.format(' '.join(logt)) | 
					
						
							|  |  |  |         prob = sorted( [float(x) for x in prob] ) | 
					
						
							|  |  |  |         disc = prob[-1] - prob[-2] | 
					
						
							|  |  |  |         xstring += '  || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | 
					
						
							|  |  |  |         discrepancy.append( disc ) | 
					
						
							|  |  |  |         string += '\n{:}'.format(xstring) | 
					
						
							|  |  |  |     return string, discrepancy | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def set_tau(self, tau_max, tau_min, epoch_ratio): | 
					
						
							|  |  |  |     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | 
					
						
							|  |  |  |     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | 
					
						
							|  |  |  |     self.tau = tau | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def get_message(self): | 
					
						
							|  |  |  |     return self.message | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, inputs): | 
					
						
							|  |  |  |     if self.search_mode == 'basic': | 
					
						
							|  |  |  |       return self.basic_forward(inputs) | 
					
						
							|  |  |  |     elif self.search_mode == 'search': | 
					
						
							|  |  |  |       return self.search_forward(inputs) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def search_forward(self, inputs): | 
					
						
							|  |  |  |     flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | 
					
						
							|  |  |  |     flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] ) | 
					
						
							|  |  |  |     selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     x, flops = inputs, [] | 
					
						
							|  |  |  |     feature_maps = [] | 
					
						
							|  |  |  |     for i, layer in enumerate(self.layers): | 
					
						
							|  |  |  |       layer_i = layer( x ) | 
					
						
							|  |  |  |       feature_maps.append( layer_i ) | 
					
						
							|  |  |  |       if i in self.depth_info: # aggregate the information | 
					
						
							|  |  |  |         choices = self.depth_info[i]['choices'] | 
					
						
							|  |  |  |         xstagei = self.depth_info[i]['stage'] | 
					
						
							|  |  |  |         possible_tensors = [] | 
					
						
							|  |  |  |         for tempi, A in enumerate(choices): | 
					
						
							|  |  |  |           xtensor = feature_maps[A] | 
					
						
							|  |  |  |           possible_tensors.append( xtensor ) | 
					
						
							|  |  |  |         weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) ) | 
					
						
							|  |  |  |         x = weighted_sum | 
					
						
							|  |  |  |       else: | 
					
						
							|  |  |  |         x = layer_i | 
					
						
							|  |  |  |         | 
					
						
							|  |  |  |       if i in self.depth_at_i: | 
					
						
							|  |  |  |         xstagei, xatti = self.depth_at_i[i] | 
					
						
							|  |  |  |         #print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6))) | 
					
						
							|  |  |  |         x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(1e6) | 
					
						
							|  |  |  |       else: | 
					
						
							|  |  |  |         x_expected_flop = layer.get_flops(1e6) | 
					
						
							|  |  |  |       flops.append( x_expected_flop ) | 
					
						
							|  |  |  |     flops.append( (self.classifier.in_features * self.classifier.out_features*1.0/1e6) ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     features = self.avgpool(x) | 
					
						
							|  |  |  |     features = features.view(features.size(0), -1) | 
					
						
							|  |  |  |     logits   = linear_forward(features, self.classifier) | 
					
						
							|  |  |  |     return logits, torch.stack( [sum(flops)] ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def basic_forward(self, inputs): | 
					
						
							|  |  |  |     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | 
					
						
							|  |  |  |     x = inputs | 
					
						
							|  |  |  |     for i, layer in enumerate(self.layers): | 
					
						
							|  |  |  |       x = layer( x ) | 
					
						
							|  |  |  |     features = self.avgpool(x) | 
					
						
							|  |  |  |     features = features.view(features.size(0), -1) | 
					
						
							|  |  |  |     logits   = self.classifier(features) | 
					
						
							|  |  |  |     return features, logits |