| 
									
										
										
										
											2021-03-03 13:57:48 +00:00
										 |  |  | ################################################## | 
					
						
							|  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 # | 
					
						
							|  |  |  | ################################################## | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | from __future__ import division | 
					
						
							|  |  |  | from __future__ import print_function | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-15 02:58:34 +00:00
										 |  |  | import os, math, random | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  | from collections import OrderedDict | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | import numpy as np | 
					
						
							|  |  |  | import pandas as pd | 
					
						
							| 
									
										
										
										
											2021-03-28 10:57:20 +00:00
										 |  |  | from typing import Text, Union | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | import copy | 
					
						
							|  |  |  | from functools import partial | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  | from typing import Optional, Text | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-28 10:57:20 +00:00
										 |  |  | from qlib.utils import get_or_create_path | 
					
						
							| 
									
										
										
										
											2021-03-15 03:36:36 +00:00
										 |  |  | from qlib.log import get_module_logger | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  | import torch | 
					
						
							| 
									
										
										
										
											2021-03-05 13:50:30 +00:00
										 |  |  | import torch.nn.functional as F | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | import torch.optim as optim | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  | import torch.utils.data as th_data | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  | from log_utils import AverageMeter | 
					
						
							| 
									
										
										
										
											2021-03-05 13:50:30 +00:00
										 |  |  | from utils import count_parameters | 
					
						
							| 
									
										
										
										
											2021-03-21 05:59:56 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | from xlayers import super_core | 
					
						
							|  |  |  | from .transformers import DEFAULT_NET_CONFIG | 
					
						
							|  |  |  | from .transformers import get_transformer | 
					
						
							| 
									
										
										
										
											2021-03-15 03:36:36 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  | from qlib.model.base import Model | 
					
						
							|  |  |  | from qlib.data.dataset import DatasetH | 
					
						
							|  |  |  | from qlib.data.dataset.handler import DataHandlerLP | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-15 03:36:36 +00:00
										 |  |  | DEFAULT_OPT_CONFIG = dict( | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |     epochs=200, | 
					
						
							|  |  |  |     lr=0.001, | 
					
						
							|  |  |  |     batch_size=2000, | 
					
						
							|  |  |  |     early_stop=20, | 
					
						
							|  |  |  |     loss="mse", | 
					
						
							|  |  |  |     optimizer="adam", | 
					
						
							|  |  |  |     num_workers=4, | 
					
						
							| 
									
										
										
										
											2021-03-06 21:44:59 -08:00
										 |  |  | ) | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-30 09:02:41 +00:00
										 |  |  | def train_or_test_epoch( | 
					
						
							|  |  |  |     xloader, model, loss_fn, metric_fn, is_train, optimizer, device | 
					
						
							|  |  |  | ): | 
					
						
							|  |  |  |     if is_train: | 
					
						
							|  |  |  |         model.train() | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         model.eval() | 
					
						
							|  |  |  |     score_meter, loss_meter = AverageMeter(), AverageMeter() | 
					
						
							|  |  |  |     for ibatch, (feats, labels) in enumerate(xloader): | 
					
						
							|  |  |  |         feats, labels = feats.to(device), labels.to(device) | 
					
						
							|  |  |  |         # forward the network | 
					
						
							|  |  |  |         preds = model(feats) | 
					
						
							|  |  |  |         loss = loss_fn(preds, labels) | 
					
						
							|  |  |  |         with torch.no_grad(): | 
					
						
							|  |  |  |             score = metric_fn(preds, labels) | 
					
						
							|  |  |  |             loss_meter.update(loss.item(), feats.size(0)) | 
					
						
							|  |  |  |             score_meter.update(score.item(), feats.size(0)) | 
					
						
							|  |  |  |         # optimize the network | 
					
						
							|  |  |  |         if is_train and optimizer is not None: | 
					
						
							|  |  |  |             optimizer.zero_grad() | 
					
						
							|  |  |  |             loss.backward() | 
					
						
							|  |  |  |             torch.nn.utils.clip_grad_value_(model.parameters(), 3.0) | 
					
						
							|  |  |  |             optimizer.step() | 
					
						
							|  |  |  |     return loss_meter.avg, score_meter.avg | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  | class QuantTransformer(Model): | 
					
						
							|  |  |  |     """Transformer-based Quant Model""" | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |     def __init__( | 
					
						
							|  |  |  |         self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs | 
					
						
							|  |  |  |     ): | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         # Set logger. | 
					
						
							|  |  |  |         self.logger = get_module_logger("QuantTransformer") | 
					
						
							| 
									
										
										
										
											2021-03-15 02:58:34 +00:00
										 |  |  |         self.logger.info("QuantTransformer PyTorch version...") | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # set hyper-parameters. | 
					
						
							| 
									
										
										
										
											2021-03-15 03:36:36 +00:00
										 |  |  |         self.net_config = net_config or DEFAULT_NET_CONFIG | 
					
						
							|  |  |  |         self.opt_config = opt_config or DEFAULT_OPT_CONFIG | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         self.metric = metric | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |         self.device = torch.device( | 
					
						
							|  |  |  |             "cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu" | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         self.seed = seed | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.logger.info( | 
					
						
							|  |  |  |             "Transformer parameters setting:" | 
					
						
							|  |  |  |             "\nnet_config : {:}" | 
					
						
							|  |  |  |             "\nopt_config : {:}" | 
					
						
							|  |  |  |             "\nmetric     : {:}" | 
					
						
							|  |  |  |             "\ndevice     : {:}" | 
					
						
							|  |  |  |             "\nseed       : {:}".format( | 
					
						
							|  |  |  |                 self.net_config, | 
					
						
							|  |  |  |                 self.opt_config, | 
					
						
							|  |  |  |                 self.metric, | 
					
						
							|  |  |  |                 self.device, | 
					
						
							|  |  |  |                 self.seed, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if self.seed is not None: | 
					
						
							| 
									
										
										
										
											2021-03-15 02:58:34 +00:00
										 |  |  |             random.seed(self.seed) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |             np.random.seed(self.seed) | 
					
						
							|  |  |  |             torch.manual_seed(self.seed) | 
					
						
							| 
									
										
										
										
											2021-03-15 02:58:34 +00:00
										 |  |  |             if self.use_gpu: | 
					
						
							|  |  |  |                 torch.cuda.manual_seed(self.seed) | 
					
						
							|  |  |  |                 torch.cuda.manual_seed_all(self.seed) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-15 03:36:36 +00:00
										 |  |  |         self.model = get_transformer(self.net_config) | 
					
						
							| 
									
										
										
										
											2021-03-21 05:59:56 -07:00
										 |  |  |         self.model.set_super_run_type(super_core.SuperRunMode.FullModel) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         self.logger.info("model: {:}".format(self.model)) | 
					
						
							|  |  |  |         self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if self.opt_config["optimizer"] == "adam": | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |             self.train_optimizer = optim.Adam( | 
					
						
							|  |  |  |                 self.model.parameters(), lr=self.opt_config["lr"] | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         elif self.opt_config["optimizer"] == "adam": | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |             self.train_optimizer = optim.SGD( | 
					
						
							|  |  |  |                 self.model.parameters(), lr=self.opt_config["lr"] | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         else: | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |             raise NotImplementedError( | 
					
						
							|  |  |  |                 "optimizer {:} is not supported!".format(optimizer) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         self.fitted = False | 
					
						
							|  |  |  |         self.model.to(self.device) | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |     @property | 
					
						
							|  |  |  |     def use_gpu(self): | 
					
						
							| 
									
										
										
										
											2021-03-15 02:58:34 +00:00
										 |  |  |         return self.device != torch.device("cpu") | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-29 05:04:24 +00:00
										 |  |  |     def to(self, device): | 
					
						
							|  |  |  |         if device is None: | 
					
						
							| 
									
										
										
										
											2021-03-28 22:26:06 -07:00
										 |  |  |             device = "cpu" | 
					
						
							|  |  |  |         self.device = device | 
					
						
							|  |  |  |         self.model.to(self.device) | 
					
						
							| 
									
										
										
										
											2021-03-30 12:25:47 +00:00
										 |  |  |         # move the optimizer | 
					
						
							|  |  |  |         for param in self.train_optimizer.state.values(): | 
					
						
							|  |  |  |             # Not sure there are any global tensors in the state dict | 
					
						
							|  |  |  |             if isinstance(param, torch.Tensor): | 
					
						
							|  |  |  |                 param.data = param.data.to(device) | 
					
						
							|  |  |  |                 if param._grad is not None: | 
					
						
							|  |  |  |                     param._grad.data = param._grad.data.to(device) | 
					
						
							|  |  |  |             elif isinstance(param, dict): | 
					
						
							|  |  |  |                 for subparam in param.values(): | 
					
						
							|  |  |  |                     if isinstance(subparam, torch.Tensor): | 
					
						
							|  |  |  |                         subparam.data = subparam.data.to(device) | 
					
						
							|  |  |  |                         if subparam._grad is not None: | 
					
						
							|  |  |  |                             subparam._grad.data = subparam._grad.data.to(device) | 
					
						
							| 
									
										
										
										
											2021-03-29 05:04:24 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |     def loss_fn(self, pred, label): | 
					
						
							|  |  |  |         mask = ~torch.isnan(label) | 
					
						
							|  |  |  |         if self.opt_config["loss"] == "mse": | 
					
						
							|  |  |  |             return F.mse_loss(pred[mask], label[mask]) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("unknown loss `{:}`".format(self.loss)) | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |     def metric_fn(self, pred, label): | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |         # the metric score : higher is better | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         if self.metric == "" or self.metric == "loss": | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |             return -self.loss_fn(pred, label) | 
					
						
							| 
									
										
										
										
											2021-02-25 00:24:56 -08:00
										 |  |  |         else: | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |             raise ValueError("unknown metric `{:}`".format(self.metric)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def fit( | 
					
						
							|  |  |  |         self, | 
					
						
							|  |  |  |         dataset: DatasetH, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:10:45 +00:00
										 |  |  |         save_dir: Optional[Text] = None, | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |     ): | 
					
						
							|  |  |  |         def _prepare_dataset(df_data): | 
					
						
							|  |  |  |             return th_data.TensorDataset( | 
					
						
							|  |  |  |                 torch.from_numpy(df_data["feature"].values).float(), | 
					
						
							|  |  |  |                 torch.from_numpy(df_data["label"].values).squeeze().float(), | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-06 21:44:59 -08:00
										 |  |  |         def _prepare_loader(dataset, shuffle): | 
					
						
							|  |  |  |             return th_data.DataLoader( | 
					
						
							|  |  |  |                 dataset, | 
					
						
							|  |  |  |                 batch_size=self.opt_config["batch_size"], | 
					
						
							|  |  |  |                 drop_last=False, | 
					
						
							|  |  |  |                 pin_memory=True, | 
					
						
							|  |  |  |                 num_workers=self.opt_config["num_workers"], | 
					
						
							|  |  |  |                 shuffle=shuffle, | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         df_train, df_valid, df_test = dataset.prepare( | 
					
						
							|  |  |  |             ["train", "valid", "test"], | 
					
						
							|  |  |  |             col_set=["feature", "label"], | 
					
						
							|  |  |  |             data_key=DataHandlerLP.DK_L, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         train_dataset, valid_dataset, test_dataset = ( | 
					
						
							|  |  |  |             _prepare_dataset(df_train), | 
					
						
							|  |  |  |             _prepare_dataset(df_valid), | 
					
						
							|  |  |  |             _prepare_dataset(df_test), | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:44:59 -08:00
										 |  |  |         train_loader, valid_loader, test_loader = ( | 
					
						
							|  |  |  |             _prepare_loader(train_dataset, True), | 
					
						
							|  |  |  |             _prepare_loader(valid_dataset, False), | 
					
						
							|  |  |  |             _prepare_loader(test_dataset, False), | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:10:45 +00:00
										 |  |  |         save_dir = get_or_create_path(save_dir, return_dir=True) | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |         self.logger.info( | 
					
						
							|  |  |  |             "Fit procedure for [{:}] with save path={:}".format( | 
					
						
							|  |  |  |                 self.__class__.__name__, save_dir | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |         def _internal_test(ckp_epoch=None, results_dict=None): | 
					
						
							|  |  |  |             with torch.no_grad(): | 
					
						
							| 
									
										
										
										
											2021-03-30 09:02:41 +00:00
										 |  |  |                 shared_kwards = { | 
					
						
							|  |  |  |                     "model": self.model, | 
					
						
							|  |  |  |                     "loss_fn": self.loss_fn, | 
					
						
							|  |  |  |                     "metric_fn": self.metric_fn, | 
					
						
							|  |  |  |                     "is_train": False, | 
					
						
							|  |  |  |                     "optimizer": None, | 
					
						
							|  |  |  |                     "device": self.device, | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 train_loss, train_score = train_or_test_epoch( | 
					
						
							|  |  |  |                     train_loader, **shared_kwards | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-30 09:02:41 +00:00
										 |  |  |                 valid_loss, valid_score = train_or_test_epoch( | 
					
						
							|  |  |  |                     valid_loader, **shared_kwards | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-30 09:02:41 +00:00
										 |  |  |                 test_loss, test_score = train_or_test_epoch( | 
					
						
							|  |  |  |                     test_loader, **shared_kwards | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |                 xstr = ( | 
					
						
							|  |  |  |                     "train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format( | 
					
						
							|  |  |  |                         train_score, valid_score, test_score | 
					
						
							|  |  |  |                     ) | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |                 ) | 
					
						
							|  |  |  |                 if ckp_epoch is not None and isinstance(results_dict, dict): | 
					
						
							|  |  |  |                     results_dict["train"][ckp_epoch] = train_score | 
					
						
							|  |  |  |                     results_dict["valid"][ckp_epoch] = valid_score | 
					
						
							|  |  |  |                     results_dict["test"][ckp_epoch] = test_score | 
					
						
							|  |  |  |                 return dict(train=train_score, valid=valid_score, test=test_score), xstr | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Pre-fetch the potential checkpoints | 
					
						
							| 
									
										
										
										
											2021-03-17 09:10:45 +00:00
										 |  |  |         ckp_path = os.path.join(save_dir, "{:}.pth".format(self.__class__.__name__)) | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |         if os.path.exists(ckp_path): | 
					
						
							| 
									
										
										
										
											2021-03-28 22:26:06 -07:00
										 |  |  |             ckp_data = torch.load(ckp_path, map_location=self.device) | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |             stop_steps, best_score, best_epoch = ( | 
					
						
							|  |  |  |                 ckp_data["stop_steps"], | 
					
						
							|  |  |  |                 ckp_data["best_score"], | 
					
						
							|  |  |  |                 ckp_data["best_epoch"], | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |             start_epoch, best_param = ckp_data["start_epoch"], ckp_data["best_param"] | 
					
						
							|  |  |  |             results_dict = ckp_data["results_dict"] | 
					
						
							|  |  |  |             self.model.load_state_dict(ckp_data["net_state_dict"]) | 
					
						
							|  |  |  |             self.train_optimizer.load_state_dict(ckp_data["opt_state_dict"]) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:10:45 +00:00
										 |  |  |             self.logger.info("Resume from existing checkpoint: {:}".format(ckp_path)) | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |         else: | 
					
						
							|  |  |  |             stop_steps, best_score, best_epoch = 0, -np.inf, -1 | 
					
						
							| 
									
										
										
										
											2021-03-17 09:10:45 +00:00
										 |  |  |             start_epoch, best_param = 0, None | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |             results_dict = dict( | 
					
						
							|  |  |  |                 train=OrderedDict(), valid=OrderedDict(), test=OrderedDict() | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |             _, eval_str = _internal_test(-1, results_dict) | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |             self.logger.info( | 
					
						
							|  |  |  |                 "Training from scratch, metrics@start: {:}".format(eval_str) | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         for iepoch in range(start_epoch, self.opt_config["epochs"]): | 
					
						
							|  |  |  |             self.logger.info( | 
					
						
							|  |  |  |                 "Epoch={:03d}/{:03d} ::==>> Best valid @{:03d} ({:.6f})".format( | 
					
						
							|  |  |  |                     iepoch, self.opt_config["epochs"], best_epoch, best_score | 
					
						
							|  |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-30 09:02:41 +00:00
										 |  |  |             train_loss, train_score = train_or_test_epoch( | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |                 train_loader, | 
					
						
							|  |  |  |                 self.model, | 
					
						
							|  |  |  |                 self.loss_fn, | 
					
						
							|  |  |  |                 self.metric_fn, | 
					
						
							|  |  |  |                 True, | 
					
						
							|  |  |  |                 self.train_optimizer, | 
					
						
							| 
									
										
										
										
											2021-03-30 09:02:41 +00:00
										 |  |  |                 self.device, | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |             ) | 
					
						
							|  |  |  |             self.logger.info( | 
					
						
							|  |  |  |                 "Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score) | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |             current_eval_scores, eval_str = _internal_test(iepoch, results_dict) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |             self.logger.info("Evaluating :: {:}".format(eval_str)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |             if current_eval_scores["valid"] > best_score: | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |                 stop_steps, best_epoch, best_score = ( | 
					
						
							|  |  |  |                     0, | 
					
						
							|  |  |  |                     iepoch, | 
					
						
							|  |  |  |                     current_eval_scores["valid"], | 
					
						
							|  |  |  |                 ) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |                 best_param = copy.deepcopy(self.model.state_dict()) | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 stop_steps += 1 | 
					
						
							|  |  |  |                 if stop_steps >= self.opt_config["early_stop"]: | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |                     self.logger.info( | 
					
						
							|  |  |  |                         "early stop at {:}-th epoch, where the best is @{:}".format( | 
					
						
							|  |  |  |                             iepoch, best_epoch | 
					
						
							|  |  |  |                         ) | 
					
						
							|  |  |  |                     ) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |                     break | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |             save_info = dict( | 
					
						
							|  |  |  |                 net_config=self.net_config, | 
					
						
							|  |  |  |                 opt_config=self.opt_config, | 
					
						
							|  |  |  |                 net_state_dict=self.model.state_dict(), | 
					
						
							|  |  |  |                 opt_state_dict=self.train_optimizer.state_dict(), | 
					
						
							|  |  |  |                 best_param=best_param, | 
					
						
							|  |  |  |                 stop_steps=stop_steps, | 
					
						
							|  |  |  |                 best_score=best_score, | 
					
						
							|  |  |  |                 best_epoch=best_epoch, | 
					
						
							| 
									
										
										
										
											2021-03-17 09:10:45 +00:00
										 |  |  |                 results_dict=results_dict, | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |                 start_epoch=iepoch + 1, | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2021-03-28 22:26:59 -07:00
										 |  |  |             torch.save(save_info, ckp_path) | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |         self.logger.info( | 
					
						
							|  |  |  |             "The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch) | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         self.model.load_state_dict(best_param) | 
					
						
							| 
									
										
										
										
											2021-03-18 15:04:14 +08:00
										 |  |  |         _, eval_str = _internal_test("final", results_dict) | 
					
						
							| 
									
										
										
										
											2021-03-17 09:10:45 +00:00
										 |  |  |         self.logger.info("Reload the best parameter :: {:}".format(eval_str)) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         if self.use_gpu: | 
					
						
							| 
									
										
										
										
											2021-03-30 09:02:41 +00:00
										 |  |  |             with torch.cuda.device(self.device): | 
					
						
							|  |  |  |                 torch.cuda.empty_cache() | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         self.fitted = True | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-28 10:57:20 +00:00
										 |  |  |     def predict(self, dataset: DatasetH, segment: Union[Text, slice] = "test"): | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         if not self.fitted: | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  |             raise ValueError("The model is not fitted yet!") | 
					
						
							| 
									
										
										
										
											2021-03-29 04:23:33 +00:00
										 |  |  |         x_test = dataset.prepare( | 
					
						
							|  |  |  |             segment, col_set="feature", data_key=DataHandlerLP.DK_I | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         index = x_test.index | 
					
						
							| 
									
										
										
										
											2021-03-07 01:44:26 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-03-29 04:23:33 +00:00
										 |  |  |         with torch.no_grad(): | 
					
						
							|  |  |  |             self.model.eval() | 
					
						
							|  |  |  |             x_values = x_test.values | 
					
						
							|  |  |  |             sample_num, batch_size = x_values.shape[0], self.opt_config["batch_size"] | 
					
						
							|  |  |  |             preds = [] | 
					
						
							|  |  |  |             for begin in range(sample_num)[::batch_size]: | 
					
						
							|  |  |  |                 if sample_num - begin < batch_size: | 
					
						
							|  |  |  |                     end = sample_num | 
					
						
							|  |  |  |                 else: | 
					
						
							|  |  |  |                     end = begin + batch_size | 
					
						
							|  |  |  |                 x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device) | 
					
						
							|  |  |  |                 with torch.no_grad(): | 
					
						
							|  |  |  |                     pred = self.model(x_batch).detach().cpu().numpy() | 
					
						
							|  |  |  |                 preds.append(pred) | 
					
						
							| 
									
										
										
										
											2021-03-06 21:35:26 -08:00
										 |  |  |         return pd.Series(np.concatenate(preds), index=index) |