Update LFNA
This commit is contained in:
		| @@ -1,7 +1,7 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
| ##################################################### | ##################################################### | ||||||
| # python exps/LFNA/lfna-tall-hpnet.py --env_version v1 --hidden_dim 16 --epochs 100000 --meta_batch 16 | # python exps/LFNA/lfna-tall-hpnet.py --env_version v1 --hidden_dim 16 --epochs 100000 --meta_batch 64 | ||||||
| ##################################################### | ##################################################### | ||||||
| import sys, time, copy, torch, random, argparse | import sys, time, copy, torch, random, argparse | ||||||
| from tqdm import tqdm | from tqdm import tqdm | ||||||
| @@ -33,7 +33,7 @@ from lfna_models import HyperNet | |||||||
| def main(args): | def main(args): | ||||||
|     logger, env_info, model_kwargs = lfna_setup(args) |     logger, env_info, model_kwargs = lfna_setup(args) | ||||||
|     dynamic_env = env_info["dynamic_env"] |     dynamic_env = env_info["dynamic_env"] | ||||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) |     model = get_model(**model_kwargs) | ||||||
|     criterion = torch.nn.MSELoss() |     criterion = torch.nn.MSELoss() | ||||||
|  |  | ||||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) |     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||||
| @@ -72,7 +72,7 @@ def main(args): | |||||||
|         ) |         ) | ||||||
|  |  | ||||||
|         limit_bar = float(iepoch + 1) / args.epochs * total_bar |         limit_bar = float(iepoch + 1) / args.epochs * total_bar | ||||||
|         limit_bar = min(max(0, int(limit_bar)), total_bar) |         limit_bar = min(max(32, int(limit_bar)), total_bar) | ||||||
|         losses = [] |         losses = [] | ||||||
|         for ibatch in range(args.meta_batch): |         for ibatch in range(args.meta_batch): | ||||||
|             cur_time = random.randint(0, limit_bar) |             cur_time = random.randint(0, limit_bar) | ||||||
|   | |||||||
| @@ -1,7 +1,7 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
| ##################################################### | ##################################################### | ||||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 | # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 50000 | ||||||
| ##################################################### | ##################################################### | ||||||
| import sys, time, copy, torch, random, argparse | import sys, time, copy, torch, random, argparse | ||||||
| from tqdm import tqdm | from tqdm import tqdm | ||||||
| @@ -33,17 +33,17 @@ from lfna_models import HyperNet | |||||||
| def main(args): | def main(args): | ||||||
|     logger, env_info, model_kwargs = lfna_setup(args) |     logger, env_info, model_kwargs = lfna_setup(args) | ||||||
|     dynamic_env = env_info["dynamic_env"] |     dynamic_env = env_info["dynamic_env"] | ||||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) |     model = get_model(**model_kwargs) | ||||||
|     model = model.to(args.device) |     model = model.to(args.device) | ||||||
|     criterion = torch.nn.MSELoss() |     criterion = torch.nn.MSELoss() | ||||||
|  |  | ||||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) |     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||||
|  |  | ||||||
|     shape_container = model.get_w_container().to_shape_container() |     shape_container = model.get_w_container().to_shape_container() | ||||||
|     hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim) |     hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim) | ||||||
|     hypernet = hypernet.to(args.device) |     hypernet = hypernet.to(args.device) | ||||||
|     # task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim)) |     # task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim)) | ||||||
|     total_bar = 10 |     total_bar = 16 | ||||||
|     task_embeds = [] |     task_embeds = [] | ||||||
|     for i in range(total_bar): |     for i in range(total_bar): | ||||||
|         tensor = torch.Tensor(1, args.task_dim).to(args.device) |         tensor = torch.Tensor(1, args.task_dim).to(args.device) | ||||||
| @@ -51,8 +51,12 @@ def main(args): | |||||||
|     for task_embed in task_embeds: |     for task_embed in task_embeds: | ||||||
|         trunc_normal_(task_embed, std=0.02) |         trunc_normal_(task_embed, std=0.02) | ||||||
|  |  | ||||||
|  |     model.train() | ||||||
|  |     hypernet.train() | ||||||
|  |  | ||||||
|     parameters = list(hypernet.parameters()) + task_embeds |     parameters = list(hypernet.parameters()) + task_embeds | ||||||
|     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) |     # optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) | ||||||
|  |     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5) | ||||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( |     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||||
|         optimizer, |         optimizer, | ||||||
|         milestones=[ |         milestones=[ | ||||||
| @@ -98,7 +102,7 @@ def main(args): | |||||||
|         lr_scheduler.step() |         lr_scheduler.step() | ||||||
|  |  | ||||||
|         loss_meter.update(final_loss.item()) |         loss_meter.update(final_loss.item()) | ||||||
|         if iepoch % 200 == 0: |         if iepoch % 100 == 0: | ||||||
|             logger.log( |             logger.log( | ||||||
|                 head_str |                 head_str | ||||||
|                 + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( |                 + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( | ||||||
| @@ -126,6 +130,26 @@ def main(args): | |||||||
|     print(model) |     print(model) | ||||||
|     print(hypernet) |     print(hypernet) | ||||||
|  |  | ||||||
|  |     w_container_per_epoch = dict() | ||||||
|  |     for idx in range(0, total_bar): | ||||||
|  |         future_time = env_info["{:}-timestamp".format(idx)] | ||||||
|  |         future_x = env_info["{:}-x".format(idx)] | ||||||
|  |         future_y = env_info["{:}-y".format(idx)] | ||||||
|  |         future_container = hypernet(task_embeds[idx]) | ||||||
|  |         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||||
|  |         with torch.no_grad(): | ||||||
|  |             future_y_hat = model.forward_with_container( | ||||||
|  |                 future_x, w_container_per_epoch[idx] | ||||||
|  |             ) | ||||||
|  |             future_loss = criterion(future_y_hat, future_y) | ||||||
|  |         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) | ||||||
|  |  | ||||||
|  |     save_checkpoint( | ||||||
|  |         {"w_container_per_epoch": w_container_per_epoch}, | ||||||
|  |         logger.path(None) / "final-ckp.pth", | ||||||
|  |         logger, | ||||||
|  |     ) | ||||||
|  |  | ||||||
|     logger.log("-" * 200 + "\n") |     logger.log("-" * 200 + "\n") | ||||||
|     logger.close() |     logger.close() | ||||||
|  |  | ||||||
| @@ -150,6 +174,12 @@ if __name__ == "__main__": | |||||||
|         required=True, |         required=True, | ||||||
|         help="The hidden dimension.", |         help="The hidden dimension.", | ||||||
|     ) |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--layer_dim", | ||||||
|  |         type=int, | ||||||
|  |         required=True, | ||||||
|  |         help="The hidden dimension.", | ||||||
|  |     ) | ||||||
|     ##### |     ##### | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--init_lr", |         "--init_lr", | ||||||
| @@ -181,7 +211,7 @@ if __name__ == "__main__": | |||||||
|     if args.rand_seed is None or args.rand_seed < 0: |     if args.rand_seed is None or args.rand_seed < 0: | ||||||
|         args.rand_seed = random.randint(1, 100000) |         args.rand_seed = random.randint(1, 100000) | ||||||
|     assert args.save_dir is not None, "The save dir argument can not be None" |     assert args.save_dir is not None, "The save dir argument can not be None" | ||||||
|     args.task_dim = args.hidden_dim |     args.task_dim = args.layer_dim | ||||||
|     args.save_dir = "{:}-{:}-d{:}".format( |     args.save_dir = "{:}-{:}-d{:}".format( | ||||||
|         args.save_dir, args.env_version, args.hidden_dim |         args.save_dir, args.env_version, args.hidden_dim | ||||||
|     ) |     ) | ||||||
|   | |||||||
| @@ -31,7 +31,7 @@ from lfna_models import HyperNet_VX as HyperNet | |||||||
| def main(args): | def main(args): | ||||||
|     logger, env_info, model_kwargs = lfna_setup(args) |     logger, env_info, model_kwargs = lfna_setup(args) | ||||||
|     dynamic_env = env_info["dynamic_env"] |     dynamic_env = env_info["dynamic_env"] | ||||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) |     model = get_model(**model_kwargs) | ||||||
|  |  | ||||||
|     total_time = env_info["total"] |     total_time = env_info["total"] | ||||||
|     for i in range(total_time): |     for i in range(total_time): | ||||||
|   | |||||||
| @@ -4,6 +4,8 @@ | |||||||
| import copy | import copy | ||||||
| import torch | import torch | ||||||
|  |  | ||||||
|  | import torch.nn.functional as F | ||||||
|  |  | ||||||
| from xlayers import super_core | from xlayers import super_core | ||||||
| from xlayers import trunc_normal_ | from xlayers import trunc_normal_ | ||||||
| from models.xcore import get_model | from models.xcore import get_model | ||||||
| @@ -29,13 +31,15 @@ class HyperNet(super_core.SuperModule): | |||||||
|         trunc_normal_(self._super_layer_embed, std=0.02) |         trunc_normal_(self._super_layer_embed, std=0.02) | ||||||
|  |  | ||||||
|         model_kwargs = dict( |         model_kwargs = dict( | ||||||
|  |             config=dict(model_type="dual_norm_mlp"), | ||||||
|             input_dim=layer_embeding + task_embedding, |             input_dim=layer_embeding + task_embedding, | ||||||
|             output_dim=max(self._numel_per_layer), |             output_dim=max(self._numel_per_layer), | ||||||
|             hidden_dims=[layer_embeding * 4] * 4, |             hidden_dims=[layer_embeding * 4] * 3, | ||||||
|             act_cls="gelu", |             act_cls="gelu", | ||||||
|             norm_cls="layer_norm_1d", |             norm_cls="layer_norm_1d", | ||||||
|  |             dropout=0.1, | ||||||
|         ) |         ) | ||||||
|         self._generator = get_model(dict(model_type="norm_mlp"), **model_kwargs) |         self._generator = get_model(**model_kwargs) | ||||||
|         """ |         """ | ||||||
|         model_kwargs = dict( |         model_kwargs = dict( | ||||||
|             input_dim=layer_embeding + task_embedding, |             input_dim=layer_embeding + task_embedding, | ||||||
| @@ -50,8 +54,12 @@ class HyperNet(super_core.SuperModule): | |||||||
|         print("generator: {:}".format(self._generator)) |         print("generator: {:}".format(self._generator)) | ||||||
|  |  | ||||||
|     def forward_raw(self, task_embed): |     def forward_raw(self, task_embed): | ||||||
|  |         # task_embed = F.normalize(task_embed, dim=-1, p=2) | ||||||
|  |         # layer_embed = F.normalize(self._super_layer_embed, dim=-1, p=2) | ||||||
|  |         layer_embed = self._super_layer_embed | ||||||
|         task_embed = task_embed.view(1, -1).expand(self._num_layers, -1) |         task_embed = task_embed.view(1, -1).expand(self._num_layers, -1) | ||||||
|         joint_embed = torch.cat((task_embed, self._super_layer_embed), dim=-1) |  | ||||||
|  |         joint_embed = torch.cat((task_embed, layer_embed), dim=-1) | ||||||
|         weights = self._generator(joint_embed) |         weights = self._generator(joint_embed) | ||||||
|         if self._return_container: |         if self._return_container: | ||||||
|             weights = torch.split(weights, 1) |             weights = torch.split(weights, 1) | ||||||
|   | |||||||
| @@ -11,6 +11,7 @@ __all__ = ["get_model"] | |||||||
|  |  | ||||||
| from xlayers.super_core import SuperSequential | from xlayers.super_core import SuperSequential | ||||||
| from xlayers.super_core import SuperLinear | from xlayers.super_core import SuperLinear | ||||||
|  | from xlayers.super_core import SuperDropout | ||||||
| from xlayers.super_core import super_name2norm | from xlayers.super_core import super_name2norm | ||||||
| from xlayers.super_core import super_name2activation | from xlayers.super_core import super_name2activation | ||||||
|  |  | ||||||
| @@ -47,7 +48,20 @@ def get_model(config: Dict[Text, Any], **kwargs): | |||||||
|             last_dim = hidden_dim |             last_dim = hidden_dim | ||||||
|         sub_layers.append(SuperLinear(last_dim, kwargs["output_dim"])) |         sub_layers.append(SuperLinear(last_dim, kwargs["output_dim"])) | ||||||
|         model = SuperSequential(*sub_layers) |         model = SuperSequential(*sub_layers) | ||||||
|  |     elif model_type == "dual_norm_mlp": | ||||||
|  |         act_cls = super_name2activation[kwargs["act_cls"]] | ||||||
|  |         norm_cls = super_name2norm[kwargs["norm_cls"]] | ||||||
|  |         sub_layers, last_dim = [], kwargs["input_dim"] | ||||||
|  |         for i, hidden_dim in enumerate(kwargs["hidden_dims"]): | ||||||
|  |             if i > 0: | ||||||
|  |                 sub_layers.append(norm_cls(last_dim, elementwise_affine=False)) | ||||||
|  |             sub_layers.append(SuperLinear(last_dim, hidden_dim)) | ||||||
|  |             sub_layers.append(SuperDropout(kwargs["dropout"])) | ||||||
|  |             sub_layers.append(SuperLinear(hidden_dim, hidden_dim)) | ||||||
|  |             sub_layers.append(act_cls()) | ||||||
|  |             last_dim = hidden_dim | ||||||
|  |         sub_layers.append(SuperLinear(last_dim, kwargs["output_dim"])) | ||||||
|  |         model = SuperSequential(*sub_layers) | ||||||
|     else: |     else: | ||||||
|         raise TypeError("Unkonwn model type: {:}".format(model_type)) |         raise TypeError("Unkonwn model type: {:}".format(model_type)) | ||||||
|     return model |     return model | ||||||
|   | |||||||
| @@ -14,6 +14,7 @@ from .super_norm import SuperSimpleNorm | |||||||
| from .super_norm import SuperLayerNorm1D | from .super_norm import SuperLayerNorm1D | ||||||
| from .super_norm import SuperSimpleLearnableNorm | from .super_norm import SuperSimpleLearnableNorm | ||||||
| from .super_norm import SuperIdentity | from .super_norm import SuperIdentity | ||||||
|  | from .super_dropout import SuperDropout | ||||||
|  |  | ||||||
| super_name2norm = { | super_name2norm = { | ||||||
|     "simple_norm": SuperSimpleNorm, |     "simple_norm": SuperSimpleNorm, | ||||||
|   | |||||||
							
								
								
									
										40
									
								
								lib/xlayers/super_dropout.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								lib/xlayers/super_dropout.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,40 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||||
|  | ##################################################### | ||||||
|  | import torch | ||||||
|  | import torch.nn as nn | ||||||
|  | import torch.nn.functional as F | ||||||
|  |  | ||||||
|  | import math | ||||||
|  | from typing import Optional, Callable | ||||||
|  |  | ||||||
|  | import spaces | ||||||
|  | from .super_module import SuperModule | ||||||
|  | from .super_module import IntSpaceType | ||||||
|  | from .super_module import BoolSpaceType | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SuperDropout(SuperModule): | ||||||
|  |     """Applies a the dropout function element-wise.""" | ||||||
|  |  | ||||||
|  |     def __init__(self, p: float = 0.5, inplace: bool = False) -> None: | ||||||
|  |         super(SuperDropout, self).__init__() | ||||||
|  |         self._p = p | ||||||
|  |         self._inplace = inplace | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def abstract_search_space(self): | ||||||
|  |         return spaces.VirtualNode(id(self)) | ||||||
|  |  | ||||||
|  |     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|  |         return self.forward_raw(input) | ||||||
|  |  | ||||||
|  |     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|  |         return F.dropout(input, self._p, self.training, self._inplace) | ||||||
|  |  | ||||||
|  |     def forward_with_container(self, input, container, prefix=[]): | ||||||
|  |         return self.forward_raw(input) | ||||||
|  |  | ||||||
|  |     def extra_repr(self) -> str: | ||||||
|  |         xstr = "inplace=True" if self._inplace else "" | ||||||
|  |         return "p={:}".format(self._p) + ", " + xstr | ||||||
| @@ -74,6 +74,19 @@ class SuperLayerNorm1D(SuperModule): | |||||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: |     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|         return F.layer_norm(input, (self.in_dim,), self.weight, self.bias, self.eps) |         return F.layer_norm(input, (self.in_dim,), self.weight, self.bias, self.eps) | ||||||
|  |  | ||||||
|  |     def forward_with_container(self, input, container, prefix=[]): | ||||||
|  |         super_weight_name = ".".join(prefix + ["weight"]) | ||||||
|  |         if container.has(super_weight_name): | ||||||
|  |             weight = container.query(super_weight_name) | ||||||
|  |         else: | ||||||
|  |             weight = None | ||||||
|  |         super_bias_name = ".".join(prefix + ["bias"]) | ||||||
|  |         if container.has(super_bias_name): | ||||||
|  |             bias = container.query(super_bias_name) | ||||||
|  |         else: | ||||||
|  |             bias = None | ||||||
|  |         return F.layer_norm(input, (self.in_dim,), weight, bias, self.eps) | ||||||
|  |  | ||||||
|     def extra_repr(self) -> str: |     def extra_repr(self) -> str: | ||||||
|         return ( |         return ( | ||||||
|             "shape={in_dim}, eps={eps}, elementwise_affine={elementwise_affine}".format( |             "shape={in_dim}, eps={eps}, elementwise_affine={elementwise_affine}".format( | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user