Update REA, REINFORCE, and RANDOM
This commit is contained in:
parent
ebad9197f7
commit
168b08d9e6
180
docs/NAS-Bench-201-PURE.md
Normal file
180
docs/NAS-Bench-201-PURE.md
Normal file
@ -0,0 +1,180 @@
|
||||
# [NAS-BENCH-201: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr)
|
||||
|
||||
We propose an algorithm-agnostic NAS benchmark (NAS-Bench-201) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms.
|
||||
The design of our search space is inspired by that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph.
|
||||
Each edge here is associated with an operation selected from a predefined operation set.
|
||||
For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-201 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total.
|
||||
|
||||
In this Markdown file, we provide:
|
||||
- [How to Use NAS-Bench-201](#how-to-use-nas-bench-201)
|
||||
|
||||
For the following two things, please use [AutoDL-Projects](https://github.com/D-X-Y/AutoDL-Projects):
|
||||
- [Instruction to re-generate NAS-Bench-201](#instruction-to-re-generate-nas-bench-201)
|
||||
- [10 NAS algorithms evaluated in our paper](#to-reproduce-10-baseline-nas-algorithms-in-nas-bench-201)
|
||||
|
||||
Note: please use `PyTorch >= 1.2.0` and `Python >= 3.6.0`.
|
||||
|
||||
You can simply type `pip install nas-bench-201` to install our api. Please see source codes of `nas-bench-201` module in [this repo](https://github.com/D-X-Y/NAS-Bench-201).
|
||||
|
||||
**If you have any questions or issues, please post it at [here](https://github.com/D-X-Y/AutoDL-Projects/issues) or email me.**
|
||||
|
||||
### Preparation and Download
|
||||
|
||||
[deprecated] The **old** benchmark file of NAS-Bench-201 can be downloaded from [Google Drive](https://drive.google.com/file/d/1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs/view?usp=sharing) or [Baidu-Wangpan (code:6u5d)](https://pan.baidu.com/s/1CiaNH6C12zuZf7q-Ilm09w).
|
||||
|
||||
[recommended] The **latest** benchmark file of NAS-Bench-201 (`NAS-Bench-201-v1_1-096897.pth`) can be downloaded from [Google Drive](https://drive.google.com/file/d/16Y0UwGisiouVRxW-W5hEtbxmcHw_0hF_/view?usp=sharing). The files for model weight are too large (431G) and I need some time to upload it. Please be patient, thanks for your understanding.
|
||||
|
||||
You can move it to anywhere you want and send its path to our API for initialization.
|
||||
- [2020.02.25] APIv1.0/FILEv1.0: [`NAS-Bench-201-v1_0-e61699.pth`](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs) (2.2G), where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial.
|
||||
- [2020.02.25] APIv1.0/FILEv1.0: The full data of each architecture can be download from [
|
||||
NAS-BENCH-201-4-v1.0-archive.tar](https://drive.google.com/open?id=1X2i-JXaElsnVLuGgM4tP-yNwtsspXgdQ) (about 226GB). This compressed folder has 15625 files containing the the trained weights.
|
||||
- [2020.02.25] APIv1.0/FILEv1.0: Checkpoints for 3 runs of each baseline NAS algorithm are provided in [Google Drive](https://drive.google.com/open?id=1eAgLZQAViP3r6dA0_ZOOGG9zPLXhGwXi).
|
||||
- [2020.03.09] APIv1.2/FILEv1.0: More robust API with more functions and descriptions
|
||||
- [2020.03.16] APIv1.3/FILEv1.1: [`NAS-Bench-201-v1_1-096897.pth`](https://drive.google.com/open?id=16Y0UwGisiouVRxW-W5hEtbxmcHw_0hF_) (4.7G), where `096897` is the last six digits for this file. It contains information of more trials compared to `NAS-Bench-201-v1_0-e61699.pth`, especially all models trained by 12 epochs on all datasets are avaliable.
|
||||
- [2020.06.30] APIv2.0: Use abstract class (NASBenchMetaAPI) for APIs of NAS-Bench-x0y.
|
||||
- [2020.06.30] FILEv2.0: coming soon!
|
||||
|
||||
**We recommend to use `NAS-Bench-201-v1_1-096897.pth`**
|
||||
|
||||
|
||||
The training and evaluation data used in NAS-Bench-201 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ).
|
||||
It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-201 or similar NAS datasets or training models by yourself, you need these data.
|
||||
|
||||
## How to Use NAS-Bench-201
|
||||
|
||||
**More usage can be found in [our test codes](https://github.com/D-X-Y/AutoDL-Projects/blob/master/exps/NAS-Bench-201/test-nas-api.py)**.
|
||||
|
||||
1. Creating an API instance from a file:
|
||||
```
|
||||
from nas_201_api import NASBench201API as API
|
||||
api = API('$path_to_meta_nas_bench_file')
|
||||
# Create an API without the verbose log
|
||||
api = API('NAS-Bench-201-v1_1-096897.pth', verbose=False)
|
||||
# The default path for benchmark file is '{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_1-096897.pth')
|
||||
api = API(None)
|
||||
```
|
||||
|
||||
2. Show the number of architectures `len(api)` and each architecture `api[i]`:
|
||||
```
|
||||
num = len(api)
|
||||
for i, arch_str in enumerate(api):
|
||||
print ('{:5d}/{:5d} : {:}'.format(i, len(api), arch_str))
|
||||
```
|
||||
|
||||
3. Show the results of all trials for a single architecture:
|
||||
```
|
||||
# show all information for a specific architecture
|
||||
api.show(1)
|
||||
api.show(2)
|
||||
|
||||
# show the mean loss and accuracy of an architecture
|
||||
info = api.query_meta_info_by_index(1) # This is an instance of `ArchResults`
|
||||
res_metrics = info.get_metrics('cifar10', 'train') # This is a dict with metric names as keys
|
||||
cost_metrics = info.get_comput_costs('cifar100') # This is a dict with metric names as keys, e.g., flops, params, latency
|
||||
|
||||
# get the detailed information
|
||||
results = api.query_by_index(1, 'cifar100') # a dict of all trials for 1st net on cifar100, where the key is the seed
|
||||
print ('There are {:} trials for this architecture [{:}] on cifar100'.format(len(results), api[1]))
|
||||
print ('Latency : {:}'.format(results[0].get_latency()))
|
||||
print ('Train Info : {:}'.format(results[0].get_train()))
|
||||
print ('Valid Info : {:}'.format(results[0].get_eval('x-valid')))
|
||||
print ('Test Info : {:}'.format(results[0].get_eval('x-test')))
|
||||
# for the metric after a specific epoch
|
||||
print ('Train Info [10-th epoch] : {:}'.format(results[0].get_train(10)))
|
||||
```
|
||||
|
||||
4. Query the index of an architecture by string
|
||||
```
|
||||
index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|')
|
||||
api.show(index)
|
||||
```
|
||||
This string `|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|` means:
|
||||
```
|
||||
node-0: the input tensor
|
||||
node-1: conv-3x3( node-0 )
|
||||
node-2: conv-3x3( node-0 ) + avg-pool-3x3( node-1 )
|
||||
node-3: skip-connect( node-0 ) + conv-3x3( node-1 ) + skip-connect( node-2 )
|
||||
```
|
||||
|
||||
5. Create the network from api:
|
||||
```
|
||||
config = api.get_net_config(123, 'cifar10') # obtain the network configuration for the 123-th architecture on the CIFAR-10 dataset
|
||||
from models import get_cell_based_tiny_net # this module is in AutoDL-Projects/lib/models
|
||||
network = get_cell_based_tiny_net(config) # create the network from configurration
|
||||
print(network) # show the structure of this architecture
|
||||
```
|
||||
If you want to load the trained weights of this created network, you need to use `api.get_net_param(123, ...)` to obtain the weights and then load it to the network.
|
||||
|
||||
6. `api.get_more_info(...)` can return the loss / accuracy / time on training / validation / test sets, which is very helpful. For more details, please look at the comments in the get_more_info function.
|
||||
|
||||
7. For other usages, please see `lib/nas_201_api/api.py`. We provide some usage information in the comments for the corresponding functions. If what you want is not provided, please feel free to open an issue for discussion, and I am happy to answer any questions regarding NAS-Bench-201.
|
||||
|
||||
|
||||
### Detailed Instruction
|
||||
|
||||
In `nas_201_api`, we define three classes: `NASBench201API`, `ArchResults`, `ResultsCount`.
|
||||
|
||||
`ResultsCount` maintains all information of a specific trial. One can instantiate ResultsCount and get the info via the following codes (`000157-FULL.pth` saves all information of all trials of 157-th architecture):
|
||||
```
|
||||
from nas_201_api import ResultsCount
|
||||
xdata = torch.load('000157-FULL.pth')
|
||||
odata = xdata['full']['all_results'][('cifar10-valid', 777)]
|
||||
result = ResultsCount.create_from_state_dict( odata )
|
||||
print(result) # print it
|
||||
print(result.get_train()) # print the final training loss/accuracy/[optional:time-cost-of-a-training-epoch]
|
||||
print(result.get_train(11)) # print the training info of the 11-th epoch
|
||||
print(result.get_eval('x-valid')) # print the final evaluation info on the validation set
|
||||
print(result.get_eval('x-valid', 11)) # print the info on the validation set of the 11-th epoch
|
||||
print(result.get_latency()) # print the evaluation latency [in batch]
|
||||
result.get_net_param() # the trained parameters of this trial
|
||||
arch_config = result.get_config(CellStructure.str2structure) # create the network with params
|
||||
net_config = dict2config(arch_config, None)
|
||||
network = get_cell_based_tiny_net(net_config)
|
||||
network.load_state_dict(result.get_net_param())
|
||||
```
|
||||
|
||||
`ArchResults` maintains all information of all trials of an architecture. Please see the following usages:
|
||||
```
|
||||
from nas_201_api import ArchResults
|
||||
xdata = torch.load('000157-FULL.pth')
|
||||
archRes = ArchResults.create_from_state_dict(xdata['less']) # load trials trained with 12 epochs
|
||||
archRes = ArchResults.create_from_state_dict(xdata['full']) # load trials trained with 200 epochs
|
||||
|
||||
print(archRes.arch_idx_str()) # print the index of this architecture
|
||||
print(archRes.get_dataset_names()) # print the supported training data
|
||||
print(archRes.get_comput_costs('cifar10-valid')) # print all computational info when training on cifar10-valid
|
||||
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False)) # print the average loss/accuracy/time on all trials
|
||||
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, True)) # print loss/accuracy/time of a randomly selected trial
|
||||
```
|
||||
|
||||
`NASBench201API` is the topest level api. Please see the following usages:
|
||||
```
|
||||
from nas_201_api import NASBench201API as API
|
||||
api = API('NAS-Bench-201-v1_1-096897.pth') # This will load all the information of NAS-Bench-201 except the trained weights
|
||||
api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_1-096897.pth')) # The same as the above line while I usually save NAS-Bench-201-v1_1-096897.pth in ~/.torch/.
|
||||
api.show(-1) # show info of all architectures
|
||||
api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-201-4-v1.0-archive'), 3) # This code will reload the information 3-th architecture with the trained weights
|
||||
|
||||
weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights.
|
||||
```
|
||||
|
||||
To obtain the training and evaluation information (please see the comments [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_201_api/api_201.py#L142)):
|
||||
```
|
||||
api.get_more_info(112, 'cifar10', None, hp='200', is_random=True)
|
||||
# Query info of last training epoch for 112-th architecture
|
||||
# using 200-epoch-hyper-parameter and randomly select a trial.
|
||||
api.get_more_info(112, 'ImageNet16-120', None, hp='200', is_random=True)
|
||||
```
|
||||
|
||||
# Citation
|
||||
|
||||
If you find that NAS-Bench-201 helps your research, please consider citing it:
|
||||
```
|
||||
@inproceedings{dong2020nasbench201,
|
||||
title = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search},
|
||||
author = {Dong, Xuanyi and Yang, Yi},
|
||||
booktitle = {International Conference on Learning Representations (ICLR)},
|
||||
url = {https://openreview.net/forum?id=HJxyZkBKDr},
|
||||
year = {2020}
|
||||
}
|
||||
```
|
214
exps/algos-v2/bohb.py
Normal file
214
exps/algos-v2/bohb.py
Normal file
@ -0,0 +1,214 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
||||
###################################################################
|
||||
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale #
|
||||
# required to install hpbandster ##################################
|
||||
# pip install hpbandster ##################################
|
||||
###################################################################
|
||||
# python exps/algos-v2/bohb.py --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3
|
||||
###################################################################
|
||||
import os, sys, time, random, argparse
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import torch
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import load_config
|
||||
from datasets import get_datasets, SearchDataset
|
||||
from procedures import prepare_seed, prepare_logger
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from nas_201_api import NASBench201API as API
|
||||
from models import CellStructure, get_search_spaces
|
||||
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
|
||||
import ConfigSpace
|
||||
from hpbandster.optimizers.bohb import BOHB
|
||||
import hpbandster.core.nameserver as hpns
|
||||
from hpbandster.core.worker import Worker
|
||||
|
||||
|
||||
def get_topology_config_space(search_space, max_nodes=4):
|
||||
cs = ConfigSpace.ConfigurationSpace()
|
||||
#edge2index = {}
|
||||
for i in range(1, max_nodes):
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space))
|
||||
return cs
|
||||
|
||||
|
||||
def get_size_config_space(search_space):
|
||||
cs = ConfigSpace.ConfigurationSpace()
|
||||
import pdb; pdb.set_trace()
|
||||
#edge2index = {}
|
||||
for i in range(1, max_nodes):
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space))
|
||||
return cs
|
||||
|
||||
|
||||
def config2topology_func(max_nodes=4):
|
||||
def config2structure(config):
|
||||
genotypes = []
|
||||
for i in range(1, max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
op_name = config[node_str]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append( tuple(xlist) )
|
||||
return CellStructure( genotypes )
|
||||
return config2structure
|
||||
|
||||
|
||||
class MyWorker(Worker):
|
||||
|
||||
def __init__(self, *args, convert_func=None, dataname=None, nas_bench=None, time_budget=None, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.convert_func = convert_func
|
||||
self._dataname = dataname
|
||||
self._nas_bench = nas_bench
|
||||
self.time_budget = time_budget
|
||||
self.seen_archs = []
|
||||
self.sim_cost_time = 0
|
||||
self.real_cost_time = 0
|
||||
self.is_end = False
|
||||
|
||||
def get_the_best(self):
|
||||
assert len(self.seen_archs) > 0
|
||||
best_index, best_acc = -1, None
|
||||
for arch_index in self.seen_archs:
|
||||
info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
|
||||
vacc = info['valid-accuracy']
|
||||
if best_acc is None or best_acc < vacc:
|
||||
best_acc = vacc
|
||||
best_index = arch_index
|
||||
assert best_index != -1
|
||||
return best_index
|
||||
|
||||
def compute(self, config, budget, **kwargs):
|
||||
start_time = time.time()
|
||||
structure = self.convert_func( config )
|
||||
arch_index = self._nas_bench.query_index_by_arch( structure )
|
||||
info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
|
||||
cur_time = info['train-all-time'] + info['valid-per-time']
|
||||
cur_vacc = info['valid-accuracy']
|
||||
self.real_cost_time += (time.time() - start_time)
|
||||
if self.sim_cost_time + cur_time <= self.time_budget and not self.is_end:
|
||||
self.sim_cost_time += cur_time
|
||||
self.seen_archs.append( arch_index )
|
||||
return ({'loss': 100 - float(cur_vacc),
|
||||
'info': {'seen-arch' : len(self.seen_archs),
|
||||
'sim-test-time' : self.sim_cost_time,
|
||||
'current-arch' : arch_index}
|
||||
})
|
||||
else:
|
||||
self.is_end = True
|
||||
return ({'loss': 100,
|
||||
'info': {'seen-arch' : len(self.seen_archs),
|
||||
'sim-test-time' : self.sim_cost_time,
|
||||
'current-arch' : None}
|
||||
})
|
||||
|
||||
|
||||
def main(xargs, api):
|
||||
torch.set_num_threads(4)
|
||||
prepare_seed(xargs.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
logger.log('{:} use api : {:}'.format(time_string(), api))
|
||||
search_space = get_search_spaces(xargs.search_space, 'nas-bench-301')
|
||||
if xargs.search_space == 'tss':
|
||||
cs = get_topology_config_space(xargs.max_nodes, search_space)
|
||||
config2structure = config2topology_func(xargs.max_nodes)
|
||||
else:
|
||||
cs = get_size_config_space(xargs.max_nodes, search_space)
|
||||
import pdb; pdb.set_trace()
|
||||
|
||||
hb_run_id = '0'
|
||||
|
||||
NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0)
|
||||
ns_host, ns_port = NS.start()
|
||||
num_workers = 1
|
||||
|
||||
workers = []
|
||||
for i in range(num_workers):
|
||||
w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataname=dataname, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i)
|
||||
w.run(background=True)
|
||||
workers.append(w)
|
||||
|
||||
start_time = time.time()
|
||||
bohb = BOHB(configspace=cs,
|
||||
run_id=hb_run_id,
|
||||
eta=3, min_budget=12, max_budget=200,
|
||||
nameserver=ns_host,
|
||||
nameserver_port=ns_port,
|
||||
num_samples=xargs.num_samples,
|
||||
random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor,
|
||||
ping_interval=10, min_bandwidth=xargs.min_bandwidth)
|
||||
|
||||
results = bohb.run(xargs.n_iters, min_n_workers=num_workers)
|
||||
|
||||
bohb.shutdown(shutdown_workers=True)
|
||||
NS.shutdown()
|
||||
|
||||
real_cost_time = time.time() - start_time
|
||||
|
||||
id2config = results.get_id2config_mapping()
|
||||
incumbent = results.get_incumbent_id()
|
||||
logger.log('Best found configuration: {:} within {:.3f} s'.format(id2config[incumbent]['config'], real_cost_time))
|
||||
best_arch = config2structure( id2config[incumbent]['config'] )
|
||||
|
||||
info = nas_bench.query_by_arch(best_arch, '200')
|
||||
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
|
||||
else : logger.log('{:}'.format(info))
|
||||
logger.log('-'*100)
|
||||
|
||||
logger.log('workers : {:.1f}s with {:} archs'.format(workers[0].time_budget, len(workers[0].seen_archs)))
|
||||
logger.close()
|
||||
return logger.log_dir, nas_bench.query_index_by_arch( best_arch ), real_cost_time
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser("BOHB: Robust and Efficient Hyperparameter Optimization at Scale")
|
||||
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||
# general arg
|
||||
parser.add_argument('--search_space', type=str, choices=['tss', 'sss'], help='Choose the search space.')
|
||||
parser.add_argument('--time_budget', type=int, default=20000, help='The total time cost budge for searching (in seconds).')
|
||||
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||
# BOHB
|
||||
parser.add_argument('--strategy', default="sampling", type=str, nargs='?', help='optimization strategy for the acquisition function')
|
||||
parser.add_argument('--min_bandwidth', default=.3, type=float, nargs='?', help='minimum bandwidth for KDE')
|
||||
parser.add_argument('--num_samples', default=64, type=int, nargs='?', help='number of samples for the acquisition function')
|
||||
parser.add_argument('--random_fraction', default=.33, type=float, nargs='?', help='fraction of random configurations')
|
||||
parser.add_argument('--bandwidth_factor', default=3, type=int, nargs='?', help='factor multiplied to the bandwidth')
|
||||
parser.add_argument('--n_iters', default=300, type=int, nargs='?', help='number of iterations for optimization method')
|
||||
# log
|
||||
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.search_space == 'tss':
|
||||
api = NASBench201API(verbose=False)
|
||||
elif args.search_space == 'sss':
|
||||
api = NASBench301API(verbose=False)
|
||||
else:
|
||||
raise ValueError('Invalid search space : {:}'.format(args.search_space))
|
||||
|
||||
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'BOHB')
|
||||
print('save-dir : {:}'.format(args.save_dir))
|
||||
|
||||
if args.rand_seed < 0:
|
||||
save_dir, all_info = None, collections.OrderedDict()
|
||||
for i in range(args.loops_if_rand):
|
||||
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand))
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
save_dir, all_archs, all_total_times = main(args, api)
|
||||
all_info[i] = {'all_archs': all_archs,
|
||||
'all_total_times': all_total_times}
|
||||
save_path = save_dir / 'results.pth'
|
||||
print('save into {:}'.format(save_path))
|
||||
torch.save(all_info, save_path)
|
||||
else:
|
||||
main(args, api)
|
@ -214,8 +214,7 @@ def main(xargs, api):
|
||||
logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget))
|
||||
history, current_best_index, total_times = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, api, xargs.dataset)
|
||||
logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_times[-1], time.time()-x_start_time))
|
||||
best_arch = max(history, key=lambda i: i.accuracy)
|
||||
best_arch = best_arch.arch
|
||||
best_arch = max(history, key=lambda x: x[0])[1]
|
||||
logger.log('{:} best arch is {:}'.format(time_string(), best_arch))
|
||||
|
||||
info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90')
|
||||
@ -249,6 +248,7 @@ if __name__ == '__main__':
|
||||
|
||||
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'R-EA-SS{:}'.format(args.ea_sample_size))
|
||||
print('save-dir : {:}'.format(args.save_dir))
|
||||
print('xargs : {:}'.format(args))
|
||||
|
||||
if args.rand_seed < 0:
|
||||
save_dir, all_info = None, collections.OrderedDict()
|
||||
|
@ -11,8 +11,8 @@ for dataset in ${datasets}
|
||||
do
|
||||
for search_space in ${search_spaces}
|
||||
do
|
||||
python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001
|
||||
python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3
|
||||
python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space}
|
||||
# python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space}
|
||||
done
|
||||
done
|
||||
|
@ -192,7 +192,7 @@ def main(xargs, nas_bench):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
|
||||
parser = argparse.ArgumentParser("BOHB: Robust and Efficient Hyperparameter Optimization at Scale")
|
||||
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||
# channels and number-of-cells
|
||||
|
@ -30,10 +30,10 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None):
|
||||
alg2name, alg2path = OrderedDict(), OrderedDict()
|
||||
alg2name['REA'] = 'R-EA-SS3'
|
||||
alg2name['REINFORCE'] = 'REINFORCE-0.001'
|
||||
# alg2name['RANDOM'] = 'RANDOM'
|
||||
alg2name['RANDOM'] = 'RANDOM'
|
||||
for alg, name in alg2name.items():
|
||||
alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth')
|
||||
assert os.path.isfile(alg2path[alg])
|
||||
assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg])
|
||||
alg2data = OrderedDict()
|
||||
for alg, path in alg2path.items():
|
||||
data = torch.load(path)
|
||||
|
Loading…
Reference in New Issue
Block a user